PAUL SCHERRER INSTITUT

Monica Kosa :: Multiscale Materials Modelling Group, PSI, CH

Extended defects modelling of functional oxides the intriguing case of UO₂

Empa Postdocs-II & PSI-FELLOW II-3i RETREAT 2018

Functional Oxides in Emerging Technologies

Unifying Motif: complex electronic structure enables functionality

Practical Utilization: how MATERIALS respond to stress?

Functional Oxides – Complex Electronic Structure, UO₂ nuclear fuel

Versatility of Uranium based materials a catalyst for N₂ Functionalization

- ➢ Industrial Haber−Bosch process: N₂ + 3H₂ → 2NH₃ 450°C, 300 bar.
- ▶ Biological N₂ fixation, N₂ + 8 H⁺ + 8 e⁻ → 2 NH₃ + H₂

Nuclear Fuel UO₂

Mechanical Properties in the Plastic Regime

- Irradiation:
 compositional changes
 temperature jumps
- U fission process: noble gases, Xe, Kr, release insoluble in the fuel matrix precipitate within the fuel body.

Extended defects: dislocations/grain boundaries can pin and immobilize gas bubbles < 1 micron.</p>

Structure - Property relationship of Dislocations in UO₂

G. W. Greenwood, A. J. E. Foreman, D. E. Rimmer, *J. Nuc. Mater.*, **1959**, 305-324. D. R. Olander, *in Fundamental Aspects of Nuclear Reactor Fuel Elements*, **1976**.

Image source: http://www.hhallberg.com/?tag=grain-boundary

I. Experimental characterization of slip systems in UO₂ compression tests

Stoichiometric UO₂ slip systems

Exp. characterization of slip systems: J. S. Nadeau, J. A. Ceram. Soc., 1969, 52, 1.

A. H. Heuer, R. J. Keller, T. E. Mitchell in *Deformation Processes in Minerals, Ceramic and Rocks*, **1990**, Ch. 15, pp. 377-390.

Stoichiometric $UO_2(U/O=2.0001)$ at 873K and 523K:

A primary slip system: {111}<1-10>*

with presence of {001}<1-10>

	Why this behavior should be observed in
The reason for the dominance of {111} slip for	UO_2 , but not in CaF ₂ , is not clear; we speculate
T < 873 K is not well understood. It was demon-	that differences in details of the bonding between
	anions and cations (the amount of ionic vs covalent
	character) may be responsible.

*50% difference in yield stresses w.r.t previous experimental studies.

Exp. characterization of {111} slip systems using slip traces and TEM analysis: R. J. Keller, T. E. Mitchell, A. H. Heuer, *Acta Metall.*, **1988**, *36*, 1061-1071. A. H. Heuer, R. J. Keller, T. E. Mitchell in *Deformation Processes in Minerals, Ceramic and Rocks*, **1990**, Ch. 15, pp. 377-390.

Empirical Potentials - Force fields

$$U(\vec{R}) = \underbrace{\sum_{bonds} k_i^{bond} (r_i - r_0)^2}_{U_{bond}} + \underbrace{\sum_{angles} k_i^{angle} (\theta_i - \theta_0)^2}_{U_{angle}} + \underbrace{\sum_{ungles} k_i^{ungle} (\theta_i - \theta_0)^2}_{U_{angle}} + \underbrace{\sum_{ungles} k_i^{ungle} (\theta_i - \theta_0)^2}_{U_{angle}} + \underbrace{\sum_{ungles} k_i^{ungle} (\theta_i - \theta_0)^2}_{U_{ungle}} + \underbrace{\sum_{ungles} k_i^{ungle} (\theta_i - \theta_0)^2}$$

Cheap computationally: Systems of 10,000-100,000 atoms.

Neglect electronic structure: Covalence in the U-O bond and change in the oxidation state.

First principles methods: DFT+U

CPU intensive: 600-3000 atoms

Detailed electronic structure: bond formation, possible change in the oxidation state during dislocations.

M. Krack, Phys. Scr. 2015, 90, 094014.

Quickstep: Make the atoms dance, M. Krack and M. Parrinello, Forschungszentrum Jülich, NIC Series, Vol. 25, 29 (2004).

Density Functional Theory modelling of UO₂

f-electrons in a standard DFT:

f-electrons via

f orbital Occupation Pattern, FOP:

 \succ restoring the band gap of UO₂

magnetic structure

dispersed among all f orbitals

> f orbitals' localized electrons

M. Krack, Phys. Scr. 2015, 90, 094014.

Plotting energy of crystal as function of displacement

γ-surface, Generalised Stacking Fault Energies

V. Vitek, Philos. Mag., **1968**, 40, 903.V. Vitek, *Progress in Materials Science*, **1992**, 36, 1-27.

Fine grid of the 0.25-0.75 region *convergence w.r.t z axis*

Why the DFT+U γ -surface is corrugated?

Electronic structure evolution during the {110} sampling

Repulsion between U ions:

the interfacial U ions redistribute the charge to reduce the repulsion between populated f-orbitals.

- Qualitative and quantitative agreement between DFT+U and Empirical Potentials.
- > The glide is governed by distortion of weak O-O interactions.

- {111} and {001} planes have comparable GSF energies, with {111} being slightly lower.
- The spread of DFT computed GSF energies: ~0.3 J/m², f-orbital population scheme.
- > The spread of EP computed GSF energies: \sim 3 J/m².

Wir schaffen Wissen – heute für morgen

Summary

Set of tools for computing and analysing the γ – surfaces was devised.

Capablity of modelling materials with complex electronic structure.

DFT data: {001} and {111} γ-surfaces have comparable GSF energies, with {111} having slightly lower values.

Wir schaffen Wissen – heute für morgen

My thanks go to

- Dr. Matthias Krack, PSI, CH
- Dr. Raoul Ngayam Happy, PSI, CH
- Dr. Sébastien Groh, UniBas, CH

€ ₽

HORIZON2020 COFUND: grant agreement no. 701647 INSPYRE CSCS

Thank you very much for your kind attention!

DFT+U results in a surface with shape similar to Yakub EP

Electronic degrees of freedom, *i.e.* the f-orbital populations, allow accommodation of lower energy geometric configurations. *Will be demonstrated for the {110} surface* 0.4