

Dr. Zuhal Tasdemir Laboratory of Micro and Nanotechnology

Paul Scherrer Institute, Switzerland

Pushing the Limits of Nanopatterning via Extreme Ultraviolet Lithography

EMPA Postdocs II and PSI- FELLOW II- 3i Retreat 2018, EMPA, Dübendorf September 21st, 2018

- Part 1: Pushing the Limits of Nanopatterning by EUV-Interference Lithography
 - Overview on EUV Interference Lithography
 - Our Global EUV Resist Screening Program with **ASML**
 - Highlights of the Resist Screening Tests in Q1-Q3 2018 ASML
- Part 2: Pushing the Limits of Nanofabrication by E-Beam Lithography

- Semiconductor Nanowires for Sensor Applications
- Results
- Conclusions and Outlook

EUV Resist Testing at PSI

- XIL-II beamline at Swiss Light Source (SLS): a **powerful** tool for the development of EUV resists
- Advantages of using EUV-IL for resist testing:
 - Periodic patterns with high resolution
 - theoretically: 3.5 nm
 - experimentally : down to 7 nm HP
 - No dose, outgassing and contamination limitations
 - Thus, low cost technique, allows easy access for resist vendors to test their novel resists

The **resolution** that we can achieve is still **limited** by the **resist** and the **quality of the diffraction gratings' masks**

On-site cleanroom for pre- and post-processing of wafers

Diffraction Grating Masks Fabrication

 Resolution (R, HP in nm), line width roughness (LWR, 3σ in nm) and sensitivity (S, dose in mJ/cm²) :challenging to improve simultaneously

\rightarrow RLS trade-off

- $\Box \qquad \text{Higher photon density} \rightarrow \text{better LWR} \rightarrow \text{high dose (S)}$
- □ Small Blur \rightarrow better resolution (R) \rightarrow high dose (S)
- □ Larger Blur \rightarrow lower roughness (L) \rightarrow loss of resolution (R)
- Highly sensitive resists to increase throughput
- CARs and other state-of-art EUV resists platforms need to be evaluated future technology nodes→ access to EUV scanners limited, expensive

tested **several state-of-the-art resist platforms** with **the same mask**, under **the same process conditions** when possible.

Sensitivity

Resolution

LW/r

3

Overview of the Resist Screening Program 2018

- Standard Resist Screening with ASML for 13 nm LS and beyond :
 - get a snapshot of the current status from all resist suppliers
 - support EUV resist development
 - evaluate exploratory alternative EUV resist platforms

Overview of 2018 Q1-Q3

Resists tested per vendor

Experiments per vendor

Highlights of the Resist Screening Program- 2018 ASML Best performing high resolution EUV resists exposed on EUV-IL

Resist screening 2018

Maximum achieved resolution per resist type (Q1-Q3 2018)

Molecular Resist 13 nm HP ~ 33 mJ/cm²

Inorganic Resist 11 nm HP ~ 65 mJ/cm²

CAR 13 nm HP ~ 98 mJ/cm² **CAR-metal** 14 nm HP ~ 54 mJ/cm²

Monterey Conference Center and Monterey Marriott Monterey, California, United States

17 - 20 September 2018

PAUL SCHERRER INSTITUT

Part 2:

Semiconductor Nanowires for Sensor Applications

- misalignment of the sample with the testing device
- manipulation of small samples
- difficulty in applying/ measuring small forces and displacements

macro -scale

5µm

Novel Method: Sample Fabrication for Nanomechanical Measurements

- No interface effects
- Sample is at the top of the surface, easy to reach from the top

Key Process Parameters

- Step (a) ➡ NW width, w₁
- Step (e) **>** NW bottom shape

width in nm

Micromanipulator

In-situ measurements

Bending strength by FEM

NANO LETTERS 2006 Vol. 6, No. 4 622-625

Y_×

Measurement of the Bending Strength of Vapor–Liquid–Solid Grown Silicon Nanowires

Samuel Hoffmann,^{*,†} Ivo Utke,[†] Benedikt Moser,[†] Johann Michler [†] Silke H. Christiansen,^{‡,§} Volker Schmidt,[§] Stephan Senz [§] Peter Werner,[§] Ulrich Gösele,[§] and Christophe Ballif^(†) $Fracture strength \sim 12 GPa$

EMPA Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland, Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany, Martin-Luther Universität Halle Wittenberg, Friedemann-Bach-Platz 6, 06099 Halle, Germany, and Institute of Microtechnology, University of Neuchâtel, A.-L. Breguet 2, 2000 Neuchâtel, Switzerland

Received November 11, 2005; Revised Manuscript Received January 30, 2006

Bending Strength ~ 8.27 GPa- 12.86 GPa

У_,×

0.6

0.4

0.2

Different Semiconductor: Ge Pillars

EHT+ 10.00 kV Signal A = InLens Mag= 32.12 K X Stage at T= 30.0

File Name = etched dia2um 95k 29.tif

1 µm

10" MD = 4.1 mm Date :3 Aug 2018 Aperture Size = 20.00 µm Time :12:00:58

Conclusions and Outlook

- EUV- IL at PSI is an effective tool for EUV resist evaluation
- In our global screening program in 2018, we have tested so many resists
- EUV- resist vendors are **actively participating** in the screening
- Semiconductor nanowires (Si and Ge) fabrication has been developed and realized
- Nano-mechanical measurement of Si NWs has been done with *in-situ* force sensor measurement method
- The same method will be applied to **Ge pillars** and then **Ge NWs** in the future

Acknowledgments

- Team of PSI- LMN and PSI- SLS
- Team of ASML
- This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 701647.

Thank you for your attention!

Cross-sectional study by HR-TEM

native oxide layer ~ 4nm

LETTERS

- Monolithically Integrated Tensile Testing Device
 - MEMS force sensor (μ m) & actuator (μ N)
 - Sample to be investigated: Silicon nanowire

Both the measurement device and sample are made from the same material- silicon: no different interface

Monolithic Integration of Micro and Nano-Scale Features

