

ELECTRODE BEHAVIOR DURING FAST CHARGING OF LITHIUM-ION CELLS

DANIEL ABRAHAM

35th Swiss Electrochemistry Symposium Aarau, Switzerland

May 22, 2019

ACKNOWLEDGEMENTS

DOE-EERE Marco Rodrigues Kaushik Kalaga Pierre Yao Ilya Shkrob Vic Maroni

ARGONNE: THE FIRST U.S. NATIONAL LABORATORY

http://www.anl.gov/

- Located 25 miles from the Chicago Loop
- Operated by the University of Chicago for the U.S. Department of Energy
- About 3,000 employees and an annual operating budget of about \$800 million
- Major research missions include basic science, environmental management, and advanced energy technologies

Battery R&D at Argonne – Lithium-ion and beyond

Research funding from both government and industry

Key Challenges for Transportation

Lower battery cost

- Lower Co content in the positive electrode oxide
 - Structural stability of oxide degrades over time

Increase energy density

- Operate cells at higher voltages
 - Increased side-reactions at the positive electrode
- Use Si in the negative electrode
 - Volume changes/fracture in Si degrades performance

Lessen likelihood of battery fires

- Use solid (ceramics, polymer) electrolytes
 - Limitations include low ionic conductivity, material cracking

Improve Low T (< 0 °C) Performance</p>

- Modify electrolyte compositions
 - Poor performance at higher temperatures

At what rate does the performance degradation set in?

Baseline Cell Chemistry FIB-SEM cross-sections of particles

 Baseline Electrolyte
1.2 M LiPF₆ in EC/EMC (3:7)

$NCM523 = Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_2$

Positive Electrode

- 90 wt% NCM523 Oxide
- 5 wt% C45 carbon
- 5 wt% PVdF binder
- 34 110 μm thk coating

Negative Electrode

- 92 wt% A12 Graphite
- 2 wt% C45 carbon
- 6 wt% PVdF binder
- 44 120 μm thk coating

Electrodes fabricated at Argonne's CAMP facility

REFERENCE ELECTRODE TECHNIQUE

Objectives

To determine cycling conditions under which Li-plating could occur

To examine electrode impedance changes that result from fast charge

 Argonne National Laboratory is a U.S. Department of Energy laboratory, managed by UChicago Argonne, LLC.

Reference Electrode cells

Using a *reference electrode* allows the measurement of electrode potentials

More info on Reference Electrode cells in

Rodrigues et al., J. Electrochem. Soc. 166 (2019) A996 *Klett et al., J. Electrochem. Soc. 163 (2016) A875-A887* Abraham et al., Electrochimica Acta 49 (2004) p. 4763

Cell voltage during cycling at various rates 3.0 – 4.39 V, 30 °C

Capacity achieved decreases with rate

Positive electrode potential at various rates Cell voltage: 3.0 – 4.39 V, 30 °C

As C-rate increases, the cell UCV is reached at progressively lower capacity because of positive electrode polarization

Argonne

Negative electrode potential at various rates Cell voltage: 3.0 – 4.39 V, 30 °C

Li-plating condition is met at rates \geq 3C

Lowering the anode potential to ≤ 0.0 V vs Li/Li⁺ creates the "Li plating condition" (LPC)

 Direct deposition of Li is thermodynamically favorable under LPC, so only *kinetic* barriers can prevent Li⁰ nucleation

But does Li plating actually occur?

 As the high current system operates far from the thermodynamic equilibrium, LPC and Li plating are related, but distinct conditions

RAMAN SPECTROSCOPY

An accessible and sensitive tool to detect Li plating

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Raman Spectroscopy of graphite electrodes

Raman Spectroscopy of overlithiated graphite

Raman Spectroscopy of lithiated graphite and graphite from fast-charged cell

Graphite electrode after fast charging (6C charge, Li plating)

Lithium acetylide band is a spectroscopic marker for metallic lithium

Raman spectra of a (Li-plated) Gr electrode exposed to lab air

1) extremely high intensity of Li_2C_2 band

2) when Li is oxidized/hydrolyzed, only D and G bands remain

How does lithium plating enhance the acetylide (carbide) band?

Origin: small carbide clusters form by reduction of SEI species by plated Li, becoming part of its SEI

SEI or
$$+ \text{Li}_{(s)} \rightarrow \text{Li}_2\text{C}_2$$

electrolyte

Mechanism: plated Li enhances the signal from its immediate SEI through surfaceenhanced Raman scattering (SERS)

Result: Li₂C₂ band is only detected when metallic Li is present

Sensitive and specific to Li

Spatially-resolved Li₂C₂ detection even after a single fast charge

graphite electrode after 7 cycles at 6C

after 1 cycle at 6C

after 1 cycle at 4C

Potential for operando studies of Li nucleation

OPERANDO X-RAY DIFFRACTION

To examine lithium concentration gradients that are generated along the electrode cross-section during fast charging

Persistence of these concentration gradients can result in nonuniform aging of the electrodes, making it difficult to predict cell life

Argonne National Laboratory is a U.S. Department of Energy laboratory, managed by UChicago Argonne, LLC

Energy Dispersive X-Ray Diffraction

Examining electrode cross-sections using operando energy dispersive X-ray diffraction

Yao et al. Energy Environ. Sci., 2019,12, 656

d-spacing (Å)

-3

Gr stages identified from spectral deconvolution

Average Li content of various layers

Average Li content of various layers during cycling at 1C rate

Residual LiC₆ and LiC₁₂ in deep layers over 3 fastdischarges = CE << 99.999% (not necessarily SEI)

Comparing data with electrochemical models

Fast charging also degrades performance of the positive (oxide) electrode

Li⁺ gradients also present in oxide electrode

FIB/SEM Primary particle separation (cracking) evident in oxides

Raman Spectroscopy

Oxide particles near electrolyte interface have higher impedance

Approaches to enable fast charging

Electrolyte design

Maximize Li⁺ ion conductivity to minimize concentration gradients Minimize SEI impedance for rapid Li⁺ ion diffusion into graphite

Electrode design

Align pores to minimize tortuosity & speed up Li⁺ ion diffusion Porosity gradients (more porous near separator)

Particle design

Optimize graphite morphology/size for rapid Li⁺ ion diffusion Optimize other cell components (oxide, separator)

Cycling protocols

High temperature charging speeds up Li⁺ ion diffusion in electrode Pulsed/intermittent charging allows time for Li⁺ ion diffusion into graphite

The Transportation Revolution

A. Schlenker, ANL (2017)

Control Systems

Vehicle Design

Lightweighting

Powertrain Optimization Advanced Sensors

AI/Machine Learning

