
Tutorial on Bayesian Optimization

Johannes Kirschner and Mojḿır Mutný

February 26th, 2019

ICFA ML Workshop, PSI

Motivating Application: Parameter Tuning of Accelerator

Maximize (photon) signal, minimize losses, . . .

[McIntire et al., 2016, Kirschner et al., 2019]

1

Motivating Application: Experimental Design

Optimize design parameters, e.g. nano materials, molecules,...

[Schneider et al., 2018, Romero et al., 2013]

2

Motivating Application: Fitting Physical Models

Optimize model parameters to fit observational data

[Ekström et al., 2019]

3

Optimizing Black-Box Functions

Maximize a Black box function:

X −→ f f (x) + ε

. Parameter space X ⊂ Rd , can also be combinatorial

. Little assumptions on f : non-convex, multiple local optima, ...

. No analytical formula for f

. No access to gradients

Only get (noisy) evaluations y = f (x) + ε

. Evaluations of f are ‘expensive’

4

Optimizing Black-Box Functions

Maximize a Black box function:

X −→ f f (x) + ε

. Parameter space X ⊂ Rd , can also be combinatorial

. Little assumptions on f : non-convex, multiple local optima, ...

. No analytical formula for f

. No access to gradients

Only get (noisy) evaluations y = f (x) + ε

. Evaluations of f are ‘expensive’

4

Optimizing Black-Box Functions

Maximize a Black box function:

X −→ f f (x) + ε

. Parameter space X ⊂ Rd , can also be combinatorial

. Little assumptions on f : non-convex, multiple local optima, ...

. No analytical formula for f

. No access to gradients

Only get (noisy) evaluations y = f (x) + ε

. Evaluations of f are ‘expensive’

4

Bayesian Optimization: Overview

Prior data set: D0

For each step t = 1, 2, 3, . . . ,T ,

Step 1: Build probabilistic model f̂t of the objective using data Dt−1

. Gaussian process regression (Part I)

Step 2: Reduce model uncertainty about maximizers

. Search guided by acquisition function xt = arg max
x∈X

α(x |f̂t) (Part II)

Step 3: Observe (noisy) measurement yt = f (xt) + ε

. Augment data Dt = Dt−1 ∪ {(xt , yt)}

At final time T : Use model to find best predicted setting.

5

Bayesian Optimization: Overview

Prior data set: D0

For each step t = 1, 2, 3, . . . ,T ,

Step 1: Build probabilistic model f̂t of the objective using data Dt−1

. Gaussian process regression (Part I)

Step 2: Reduce model uncertainty about maximizers

. Search guided by acquisition function xt = arg max
x∈X

α(x |f̂t) (Part II)

Step 3: Observe (noisy) measurement yt = f (xt) + ε

. Augment data Dt = Dt−1 ∪ {(xt , yt)}

At final time T : Use model to find best predicted setting.

5

Bayesian Optimization: Overview

Prior data set: D0

For each step t = 1, 2, 3, . . . ,T ,

Step 1: Build probabilistic model f̂t of the objective using data Dt−1

. Gaussian process regression (Part I)

Step 2: Reduce model uncertainty about maximizers

. Search guided by acquisition function xt = arg max
x∈X

α(x |f̂t) (Part II)

Step 3: Observe (noisy) measurement yt = f (xt) + ε

. Augment data Dt = Dt−1 ∪ {(xt , yt)}

At final time T : Use model to find best predicted setting.

5

Bayesian Optimization: Overview

Prior data set: D0

For each step t = 1, 2, 3, . . . ,T ,

Step 1: Build probabilistic model f̂t of the objective using data Dt−1

. Gaussian process regression (Part I)

Step 2: Reduce model uncertainty about maximizers

. Search guided by acquisition function xt = arg max
x∈X

α(x |f̂t) (Part II)

Step 3: Observe (noisy) measurement yt = f (xt) + ε

. Augment data Dt = Dt−1 ∪ {(xt , yt)}

At final time T : Use model to find best predicted setting.

5

Bayesian Optimization: Overview

Prior data set: D0

For each step t = 1, 2, 3, . . . ,T ,

Step 1: Build probabilistic model f̂t of the objective using data Dt−1

. Gaussian process regression (Part I)

Step 2: Reduce model uncertainty about maximizers

. Search guided by acquisition function xt = arg max
x∈X

α(x |f̂t) (Part II)

Step 3: Observe (noisy) measurement yt = f (xt) + ε

. Augment data Dt = Dt−1 ∪ {(xt , yt)}

At final time T : Use model to find best predicted setting.

5

Part I: Gaussian Process Regression

5

Bayesian Statistics

Prior: Distribution P(f) over f

. “prior belief”

Data likelihood: P(Dt |f)

. e.g. y ∼ f (x) +N (0, 1)

Posterior distribution: P(f |Dt) =
P(Dt |f)P(f)

P(Dt)
. Bayes’ theorem

. The posterior distribution captures our belief in f after seeing the data.

6

Bayesian Statistics

Prior: Distribution P(f) over f

. “prior belief”

Data likelihood: P(Dt |f)

. e.g. y ∼ f (x) +N (0, 1)

Posterior distribution: P(f |Dt) =
P(Dt |f)P(f)

P(Dt)
. Bayes’ theorem

. The posterior distribution captures our belief in f after seeing the data.

6

Bayesian Statistics

Prior: Distribution P(f) over f

. “prior belief”

Data likelihood: P(Dt |f)

. e.g. y ∼ f (x) +N (0, 1)

Posterior distribution: P(f |Dt) =
P(Dt |f)P(f)

P(Dt)
. Bayes’ theorem

. The posterior distribution captures our belief in f after seeing the data.

6

Gaussian Processes

. Gaussian process (GP) = normal distribution over functions

. Finite marginals f (x1), . . . , f (xn) are multivariate Gaussians

. Parameterized by covariance function (kernel) k(x , x ′) = Cov(f (x), f (x ′))

7

Gaussian Processes

. Gaussian process (GP) = normal distribution over functions

. Finite marginals f (x1), . . . , f (xn) are multivariate Gaussians

. Parameterized by covariance function (kernel) k(x , x ′) = Cov(f (x), f (x ′))

7

Gaussian Processes

. Gaussian process (GP) = normal distribution over functions

. Finite marginals f (x1), . . . , f (xn) are multivariate Gaussians

. Parameterized by covariance function (kernel) k(x , x ′) = Cov(f (x), f (x ′)) 7

Gaussian Process on Finite Domain

Finite domain: X = {x1, . . . , xn}

Definition: f is a Gaussian process with mean µ(x) and kernel k(x , x ′)

. if f (x1), . . . , f (xn) is multivariate normal N (m,K) with

. mean m = [µ(x1), . . . µ(xn)],

. covariance K = [k(xi , xj)]i ,j=1,...,n.

Denote f ∼ GP(m, k).

8

Gaussian Process on Finite Domain

Finite domain: X = {x1, . . . , xn}

Definition: f is a Gaussian process with mean µ(x) and kernel k(x , x ′)

. if f (x1), . . . , f (xn) is multivariate normal N (m,K) with

. mean m = [µ(x1), . . . µ(xn)],

. covariance K = [k(xi , xj)]i ,j=1,...,n.

Denote f ∼ GP(m, k).

8

Gaussian Process on Finite Domain

Finite domain: X = {x1, . . . , xn}

Definition: f is a Gaussian process with mean µ(x) and kernel k(x , x ′)

. if f (x1), . . . , f (xn) is multivariate normal N (m,K) with

. mean m = [µ(x1), . . . µ(xn)],

. covariance K = [k(xi , xj)]i ,j=1,...,n.

Denote f ∼ GP(m, k).

8

Gaussian Process on Finite Domain

Finite domain: X = {x1, . . . , xn}

Definition: f is a Gaussian process with mean µ(x) and kernel k(x , x ′)

. if f (x1), . . . , f (xn) is multivariate normal N (m,K) with

. mean m = [µ(x1), . . . µ(xn)],

. covariance K = [k(xi , xj)]i ,j=1,...,n.

Denote f ∼ GP(m, k).

8

Gaussian Process on Finite Domain

Finite domain: X = {x1, . . . , xn}

Definition: f is a Gaussian process with mean µ(x) and kernel k(x , x ′)

. if f (x1), . . . , f (xn) is multivariate normal N (m,K) with

. mean m = [µ(x1), . . . µ(xn)],

. covariance K = [k(xi , xj)]i ,j=1,...,n.

Denote f ∼ GP(m, k).

8

Gaussian Process on Continuous Domain

Continuous domain: X ⊂ Rd

Definition: f is a Gaussian process with mean µ(x) and kernel k(x , x ′) if

. for any finite subset {x1, . . . , xn} ⊂ X ,

. f (x1), . . . , f (xn) is multivariate normal N (m,K) with

. mean m = [µ(x1), . . . µ(xn)],

. covariance K = [k(xi , xj)]i ,j=1,...,n.

In practice we always evaluate/sample the GP on finite (grid) domains.

9

Gaussian Process on Continuous Domain

Continuous domain: X ⊂ Rd

Definition: f is a Gaussian process with mean µ(x) and kernel k(x , x ′) if

. for any finite subset {x1, . . . , xn} ⊂ X ,

. f (x1), . . . , f (xn) is multivariate normal N (m,K) with

. mean m = [µ(x1), . . . µ(xn)],

. covariance K = [k(xi , xj)]i ,j=1,...,n.

In practice we always evaluate/sample the GP on finite (grid) domains.

9

Gaussian Process on Continuous Domain

Continuous domain: X ⊂ Rd

Definition: f is a Gaussian process with mean µ(x) and kernel k(x , x ′) if

. for any finite subset {x1, . . . , xn} ⊂ X ,

. f (x1), . . . , f (xn) is multivariate normal N (m,K) with

. mean m = [µ(x1), . . . µ(xn)],

. covariance K = [k(xi , xj)]i ,j=1,...,n.

In practice we always evaluate/sample the GP on finite (grid) domains.

9

Gaussian Process on Continuous Domain

Continuous domain: X ⊂ Rd

Definition: f is a Gaussian process with mean µ(x) and kernel k(x , x ′) if

. for any finite subset {x1, . . . , xn} ⊂ X ,

. f (x1), . . . , f (xn) is multivariate normal N (m,K) with

. mean m = [µ(x1), . . . µ(xn)],

. covariance K = [k(xi , xj)]i ,j=1,...,n.

In practice we always evaluate/sample the GP on finite (grid) domains.

9

Samples from a Gaussian Process

10

Samples from a Gaussian Process

10

Samples from a Gaussian Process

10

Gaussian Process Regression

Prior: GP prior P(f) = GP(µ, k) over f

. “prior belief” with prior mean µ and kernel k

Gaussian likelihood: iid Gaussian noise:

. P({y1, . . . , ym}|f (x1), . . . , f (xn)) =
∏

i N (f (xi), ρ
2)

. e.g. y ∼ f (x) +N (0, ρ2)

Posterior distribution: P(f |Dt) = GP(µn, kn)

. Posterior distributions is a again a GP!

. Closed form updates exist.

. Excellent book (free pdf): [Rasmussen, 2004, Chapter 2]

11

Gaussian Process Regression

Prior: GP prior P(f) = GP(µ, k) over f

. “prior belief” with prior mean µ and kernel k

Gaussian likelihood: iid Gaussian noise:

. P({y1, . . . , ym}|f (x1), . . . , f (xn)) =
∏

i N (f (xi), ρ
2)

. e.g. y ∼ f (x) +N (0, ρ2)

Posterior distribution: P(f |Dt) = GP(µn, kn)

. Posterior distributions is a again a GP!

. Closed form updates exist.

. Excellent book (free pdf): [Rasmussen, 2004, Chapter 2]

11

Gaussian Process Regression

Prior: GP prior P(f) = GP(µ, k) over f

. “prior belief” with prior mean µ and kernel k

Gaussian likelihood: iid Gaussian noise:

. P({y1, . . . , ym}|f (x1), . . . , f (xn)) =
∏

i N (f (xi), ρ
2)

. e.g. y ∼ f (x) +N (0, ρ2)

Posterior distribution: P(f |Dt) = GP(µn, kn)

. Posterior distributions is a again a GP!

. Closed form updates exist.

. Excellent book (free pdf): [Rasmussen, 2004, Chapter 2]

11

Marginals

Posterior distribution: P(f |Dt) = GP(µn, kn)

. Remember: Finite marginals are Gaussians!

. Marginal posterior distribution at any point x is N (µn(x), kn(x , x))

Posterior variance σn(x)2 = kn(x , x) quantifies uncertainty

12

Marginals

Posterior distribution: P(f |Dt) = GP(µn, kn)

. Remember: Finite marginals are Gaussians!

. Marginal posterior distribution at any point x is N (µn(x), kn(x , x))

Posterior variance σn(x)2 = kn(x , x) quantifies uncertainty

12

Kernel Functions

Kernel k needs to satisfy some technical assumptions:

. symmetric

. positive semidefinite.

Kernels are similarity measures between points and encodes smoothness.

13

Kernel Functions

Kernel k needs to satisfy some technical assumptions:

. symmetric

. positive semidefinite.

Kernels are similarity measures between points and encodes smoothness.

13

Kernel Functions: Squared Exponential (RBF)

Squared exponential kernel: k(x , x ′) = exp(−‖x − x ′‖2/l2)

. l is called lengthscale (or bandwidth)

14

Kernel Functions: Exponential

Exponential kernel: k(x , x ′) = exp(−‖x − x ′‖/l2)

. l is called lengthscale (or bandwidth)

15

Kernel Functions: Matern

Matern32 kernel: k(x , x ′) =
(

1 +

√
3‖x − x‖

l

)
exp
(
−
√

3‖x − x ′‖
l

)
. l is called lengthscale (or bandwidth)

. Matern52, etc: Family of kernels with increasing smoothness

16

Kernel Functions: Linear

Linear kernel: k(x , x ′) = x>x ′

. Recovers (Bayesian) linear regression!

Feature kernel: k(x , x ′) = Φ(x)>Φ(x ′)

. E.g. polynomials Φ(x) = [1, x , x2]
17

Kernel Parameters I

Noise variance

. Easy to measure

. Slightly larger value increases robustness

Kernel

. Smoothness of function

. RBF smooth functions

. Matern32, Matern52, less smooth, often work well in pratice

. Can also combine kernels, e.g. RBF + 5·Matern32

. Each kernel has its own hyper-parameters

18

Kernel Parameters I

Noise variance

. Easy to measure

. Slightly larger value increases robustness

Kernel

. Smoothness of function

. RBF smooth functions

. Matern32, Matern52, less smooth, often work well in pratice

. Can also combine kernels, e.g. RBF + 5·Matern32

. Each kernel has its own hyper-parameters

18

Kernel Parameters II

Normalizes domain (x-values)

Normalizes objective (y-values)

Prior variance

. Expected range of objective values

. Keep fixed (to 1) and normalize data

Lengthscale

. Smoothness of function

. If too large, might not model the objective well

. Can pick different lengthscales for different dimensions (ARD)

. Normalizes the domain

19

Kernel Parameters II

Normalizes domain (x-values)

Normalizes objective (y-values)

Prior variance

. Expected range of objective values

. Keep fixed (to 1) and normalize data

Lengthscale

. Smoothness of function

. If too large, might not model the objective well

. Can pick different lengthscales for different dimensions (ARD)

. Normalizes the domain

19

How to choose parameters?

Try and error

. Parameters usually more intuitive to tune

Point estimates

. Maximum a posteriori estimation: θ∗ = arg maxθ P(Dt |θ)P(θ)

. Requires ‘representative’ initial data

. Might not work well with data collected while optimizing

Bayesian approach

. Define ‘reasonable’ prior distribution P(θ) over θ

. Marginalize predictions over posterior P(θ|Dt)

. More expensive to compute, no closed form

. Eliminates hyperparameters

20

How to choose parameters?

Try and error

. Parameters usually more intuitive to tune

Point estimates

. Maximum a posteriori estimation: θ∗ = arg maxθ P(Dt |θ)P(θ)

. Requires ‘representative’ initial data

. Might not work well with data collected while optimizing

Bayesian approach

. Define ‘reasonable’ prior distribution P(θ) over θ

. Marginalize predictions over posterior P(θ|Dt)

. More expensive to compute, no closed form

. Eliminates hyperparameters

20

How to choose parameters?

Try and error

. Parameters usually more intuitive to tune

Point estimates

. Maximum a posteriori estimation: θ∗ = arg maxθ P(Dt |θ)P(θ)

. Requires ‘representative’ initial data

. Might not work well with data collected while optimizing

Bayesian approach

. Define ‘reasonable’ prior distribution P(θ) over θ

. Marginalize predictions over posterior P(θ|Dt)

. More expensive to compute, no closed form

. Eliminates hyperparameters
20

Notebook Session: GP Regression using GPy

20

Part II: Bayesian Optimization

20

Optimization - recap

. Assume function f (x) where x ∈ X .

. Noisy zero-order oracle ⇐⇒ y = f (x) + ε

. Grid approach fails:

. due to noise
Remedy: Probabilistic model: Gaussian Processes!

21

Optimization - recap

. Assume function f (x) where x ∈ X .

. Noisy zero-order oracle ⇐⇒ y = f (x) + ε

. Grid approach fails:

. due to noise
Remedy: Probabilistic model: Gaussian Processes!

21

Optimization - recap

. Assume function f (x) where x ∈ X .

. Noisy zero-order oracle ⇐⇒ y = f (x) + ε

. Grid approach fails:

. due to noise
Remedy: Probabilistic model: Gaussian Processes!

21

Optimization - recap

. Assume function f (x) where x ∈ X .

. Noisy zero-order oracle ⇐⇒ y = f (x) + ε

. Grid approach fails:

. due to noise

Remedy: Probabilistic model: Gaussian Processes!

21

Optimization - recap

. Assume function f (x) where x ∈ X .

. Noisy zero-order oracle ⇐⇒ y = f (x) + ε

. Grid approach fails:

. due to noise

Remedy: Probabilistic model: Gaussian Processes!

21

Optimization - recap

. Assume function f (x) where x ∈ X .

. Noisy zero-order oracle ⇐⇒ y = f (x) + ε

. Grid approach fails:

. due to noise

. due to efficiency [to come]

Remedy: Probabilistic model: Gaussian Processes!

21

Optimization - recap

. Assume function f (x) where x ∈ X .

. Noisy zero-order oracle ⇐⇒ y = f (x) + ε

. Grid approach fails:

. due to noise

. due to efficiency [to come]

Remedy: Probabilistic model: Gaussian Processes!

21

GPs: Avoid not necessary evaluations

22

GPs: Avoid not necessary evaluations

22

GPs: Avoid not necessary evaluations

22

GPs: Avoid not necessary evaluations

22

GPs: Avoid not necessary evaluations

Orange regions are already ruled out.

22

Bayesian Optimization: Overview

Prior data set: D0

For each step t = 1, 2, 3, . . . ,T ,

Step 1: Build probabilistic model f̂t of the objective using data Dt−1

. Gaussian process regression (Part I)

Step 2: Reduce model uncertainty about maximizers

. Search guided by acquisition function xt = arg max
x∈X

α(x |f̂t) (Part II)

Step 3: Observe (noisy) measurement yt = f (xt) + ε

. Augment data Dt = Dt−1 ∪ {(xt , yt)}

At final time T : Use model to find best predicted setting.

23

Bayesian Optimization: Overview

Prior data set: D0

For each step t = 1, 2, 3, . . . ,T ,

Step 1: Build probabilistic model f̂t of the objective using data Dt−1

. Gaussian process regression (Part I)

Step 2: Reduce model uncertainty about maximizers

. Search guided by acquisition function xt = arg max
x∈X

α(x |f̂t) (Part II)

Step 3: Observe (noisy) measurement yt = f (xt) + ε

. Augment data Dt = Dt−1 ∪ {(xt , yt)}

At final time T : Use model to find best predicted setting.

23

Bayesian Optimization: Overview

Prior data set: D0

For each step t = 1, 2, 3, . . . ,T ,

Step 1: Build probabilistic model f̂t of the objective using data Dt−1

. Gaussian process regression (Part I)

Step 2: Reduce model uncertainty about maximizers

. Search guided by acquisition function xt = arg max
x∈X

α(x |f̂t) (Part II)

Step 3: Observe (noisy) measurement yt = f (xt) + ε

. Augment data Dt = Dt−1 ∪ {(xt , yt)}

At final time T : Use model to find best predicted setting.

23

Bayesian Optimization: Overview

Prior data set: D0

For each step t = 1, 2, 3, . . . ,T ,

Step 1: Build probabilistic model f̂t of the objective using data Dt−1

. Gaussian process regression (Part I)

Step 2: Reduce model uncertainty about maximizers

. Search guided by acquisition function xt = arg max
x∈X

α(x |f̂t) (Part II)

Step 3: Observe (noisy) measurement yt = f (xt) + ε

. Augment data Dt = Dt−1 ∪ {(xt , yt)}

At final time T : Use model to find best predicted setting.

23

Bayesian Optimization: Overview

Prior data set: D0

For each step t = 1, 2, 3, . . . ,T ,

Step 1: Build probabilistic model f̂t of the objective using data Dt−1

. Gaussian process regression (Part I)

Step 2: Reduce model uncertainty about maximizers

. Search guided by acquisition function xt = arg max
x∈X

α(x |f̂t) (Part II)

Step 3: Observe (noisy) measurement yt = f (xt) + ε

. Augment data Dt = Dt−1 ∪ {(xt , yt)}

At final time T : Use model to find best predicted setting.

23

Upper Confidence Bound (UCB)

. µt . . . posterior mean after seeing t points

. σt . . . posterior standard deviation after seeing t points

. β ∈ R real parameter trading exploration and exploitation [see later]

αt(x) = µt(x) + βσt(x)

. How to optimize αt(x)?

. discretize search space X

. first-order heuristics

24

Upper Confidence Bound (UCB)

. µt . . . posterior mean after seeing t points

. σt . . . posterior standard deviation after seeing t points

. β ∈ R real parameter trading exploration and exploitation [see later]

αt(x) = µt(x) + βσt(x)

. How to optimize αt(x)?

. discretize search space X

. first-order heuristics

24

Upper Confidence Bound (UCB)

. µt . . . posterior mean after seeing t points

. σt . . . posterior standard deviation after seeing t points

. β ∈ R real parameter trading exploration and exploitation [see later]

αt(x) = µt(x) + βσt(x)

. How to optimize αt(x)?

. discretize search space X

. first-order heuristics

24

Upper Confidence Bound (UCB)

. µt . . . posterior mean after seeing t points

. σt . . . posterior standard deviation after seeing t points

. β ∈ R real parameter trading exploration and exploitation [see later]

αt(x) = µt(x) + βσt(x)

. How to optimize αt(x)?

. discretize search space X

. first-order heuristics

24

Upper Confidence Bound (UCB)

. µt . . . posterior mean after seeing t points

. σt . . . posterior standard deviation after seeing t points

. β ∈ R real parameter trading exploration and exploitation [see later]

αt(x) = µt(x) + βσt(x)

. How to optimize αt(x)?

. discretize search space X

. first-order heuristics

24

Upper Confidence Bound (UCB)

. µt . . . posterior mean after seeing t points

. σt . . . posterior standard deviation after seeing t points

. β ∈ R real parameter trading exploration and exploitation [see later]

αt(x) = µt(x) + βσt(x)

. How to optimize αt(x)?

. discretize search space X

. first-order heuristics

24

UCB: Example

25

UCB: Example

25

UCB: Example

25

UCB: Example

25

UCB: Example

25

UCB: Example

25

UCB: Example

25

UCB: Example

25

Consequence of β

. What is β?

. β trades exploration and exploitation

. Theoretical value that ensure global convergence (right model assumption):

βt = 2 log(γt + 1)

where γt is maximum information gain, for RBF kernel γt = C log(T)d+1

. (Very common) heuristic approach: β ≈ 2.

. β too small =⇒ gets stuck/hill climbing

. β too high =⇒ incremental grid search

26

Consequence of β

. What is β?

. β trades exploration and exploitation

. Theoretical value that ensure global convergence (right model assumption):

βt = 2 log(γt + 1)

where γt is maximum information gain, for RBF kernel γt = C log(T)d+1

. (Very common) heuristic approach: β ≈ 2.

. β too small =⇒ gets stuck/hill climbing

. β too high =⇒ incremental grid search

26

Consequence of β

. What is β?

. β trades exploration and exploitation

. Theoretical value that ensure global convergence (right model assumption):

βt = 2 log(γt + 1)

where γt is maximum information gain, for RBF kernel γt = C log(T)d+1

. (Very common) heuristic approach: β ≈ 2.

. β too small =⇒ gets stuck/hill climbing

. β too high =⇒ incremental grid search

26

Consequence of β

. What is β?

. β trades exploration and exploitation

. Theoretical value that ensure global convergence (right model assumption):

βt = 2 log(γt + 1)

where γt is maximum information gain, for RBF kernel γt = C log(T)d+1

. (Very common) heuristic approach: β ≈ 2.

. β too small =⇒ gets stuck/hill climbing

. β too high =⇒ incremental grid search

26

Consequence of β

. What is β?

. β trades exploration and exploitation

. Theoretical value that ensure global convergence (right model assumption):

βt = 2 log(γt + 1)

where γt is maximum information gain, for RBF kernel γt = C log(T)d+1

. (Very common) heuristic approach: β ≈ 2.

. β too small =⇒ gets stuck/hill climbing

. β too high =⇒ incremental grid search

26

Consequence of β

. What is β?

. β trades exploration and exploitation

. Theoretical value that ensure global convergence (right model assumption):

βt = 2 log(γt + 1)

where γt is maximum information gain, for RBF kernel γt = C log(T)d+1

. (Very common) heuristic approach: β ≈ 2.

. β too small =⇒ gets stuck/hill climbing

. β too high =⇒ incremental grid search

26

Consequence of β

. What is β?

. β trades exploration and exploitation

. Theoretical value that ensure global convergence (right model assumption):

βt = 2 log(γt + 1)

where γt is maximum information gain, for RBF kernel γt = C log(T)d+1

. (Very common) heuristic approach: β ≈ 2.

. β too small =⇒ gets stuck/hill climbing

. β too high =⇒ incremental grid search

26

Consequence of β II

. Hill Climbing - β small

27

Consequence of β II

. Hill Climbing - β small

27

Consequence of β II

. Hill Climbing - β small

27

Consequence of β II

. Hill Climbing - β small

27

Consequence of β II

. Hill Climbing - β small

27

Consequence of β II

. Hill Climbing - β small

27

Consequence of β II

. Hill Climbing - β small

27

Consequence of β II

. Hill Climbing - β small

27

Consequence of β II

. Hill Climbing - β small

27

Consequence of β II

. Hill Climbing - β small

27

Consequence of β II

. Hill Climbing - β small

27

Consequence of β II

. Hill Climbing - β small . Sequential Grid - β large

27

Consequence of β II

. Hill Climbing - β small . Sequential Grid - β large

27

Consequence of β II

. Hill Climbing - β small . Sequential Grid - β large

27

Consequence of β II

. Hill Climbing - β small . Sequential Grid - β large

27

Consequence of β II

. Hill Climbing - β small . Sequential Grid - β large

27

Consequence of β II

. Hill Climbing - β small . Sequential Grid - β large

27

Consequence of β II

. Hill Climbing - β small . Sequential Grid - β large

27

Other acquisition function

. Thompson sampling

. Sample a path s ∼ GP(µt , σt)

. Acquisition αt(x) = s(x)

. Empirically works often better

. Expected Improvement [Mockus, 1982]

. µt(x
+) is the best mean estimate

. αt(x) = E[max(0, f (x)− f (x+)|Dt]

. Analytical solution: αt(x) = (µt(x)− µ(x+))Φ(Z) + σ(x)φ(Z) where,

Z = µt−µ(x+)
σt(x)

and Φ, φ are cdf and pdf of standard normal.

28

Other acquisition function

. Thompson sampling

. Sample a path s ∼ GP(µt , σt)

. Acquisition αt(x) = s(x)

. Empirically works often better

. Expected Improvement [Mockus, 1982]

. µt(x
+) is the best mean estimate

. αt(x) = E[max(0, f (x)− f (x+)|Dt]

. Analytical solution: αt(x) = (µt(x)− µ(x+))Φ(Z) + σ(x)φ(Z) where,

Z = µt−µ(x+)
σt(x)

and Φ, φ are cdf and pdf of standard normal.

28

Other acquisition function

. Thompson sampling

. Sample a path s ∼ GP(µt , σt)

. Acquisition αt(x) = s(x)

. Empirically works often better

. Expected Improvement [Mockus, 1982]

. µt(x
+) is the best mean estimate

. αt(x) = E[max(0, f (x)− f (x+)|Dt]

. Analytical solution: αt(x) = (µt(x)− µ(x+))Φ(Z) + σ(x)φ(Z) where,

Z = µt−µ(x+)
σt(x)

and Φ, φ are cdf and pdf of standard normal.

28

Other acquisition function

. Thompson sampling

. Sample a path s ∼ GP(µt , σt)

. Acquisition αt(x) = s(x)

. Empirically works often better

. Expected Improvement [Mockus, 1982]

. µt(x
+) is the best mean estimate

. αt(x) = E[max(0, f (x)− f (x+)|Dt]

. Analytical solution: αt(x) = (µt(x)− µ(x+))Φ(Z) + σ(x)φ(Z) where,

Z = µt−µ(x+)
σt(x)

and Φ, φ are cdf and pdf of standard normal.

28

Other acquisition function

. Thompson sampling

. Sample a path s ∼ GP(µt , σt)

. Acquisition αt(x) = s(x)

. Empirically works often better

. Expected Improvement [Mockus, 1982]

. µt(x
+) is the best mean estimate

. αt(x) = E[max(0, f (x)− f (x+)|Dt]

. Analytical solution: αt(x) = (µt(x)− µ(x+))Φ(Z) + σ(x)φ(Z) where,

Z = µt−µ(x+)
σt(x)

and Φ, φ are cdf and pdf of standard normal.

28

Other acquisition function

. Thompson sampling

. Sample a path s ∼ GP(µt , σt)

. Acquisition αt(x) = s(x)

. Empirically works often better

. Expected Improvement [Mockus, 1982]

. µt(x
+) is the best mean estimate

. αt(x) = E[max(0, f (x)− f (x+)|Dt]

. Analytical solution: αt(x) = (µt(x)− µ(x+))Φ(Z) + σ(x)φ(Z) where,

Z = µt−µ(x+)
σt(x)

and Φ, φ are cdf and pdf of standard normal.

28

Other acquisition function

. Thompson sampling

. Sample a path s ∼ GP(µt , σt)

. Acquisition αt(x) = s(x)

. Empirically works often better

. Expected Improvement [Mockus, 1982]

. µt(x
+) is the best mean estimate

. αt(x) = E[max(0, f (x)− f (x+)|Dt]

. Analytical solution: αt(x) = (µt(x)− µ(x+))Φ(Z) + σ(x)φ(Z) where,

Z = µt−µ(x+)
σt(x)

and Φ, φ are cdf and pdf of standard normal.

28

Other acquisition function

. Thompson sampling

. Sample a path s ∼ GP(µt , σt)

. Acquisition αt(x) = s(x)

. Empirically works often better

. Expected Improvement [Mockus, 1982]

. µt(x
+) is the best mean estimate

. αt(x) = E[max(0, f (x)− f (x+)|Dt]

. Analytical solution: αt(x) = (µt(x)− µ(x+))Φ(Z) + σ(x)φ(Z) where,

Z = µt−µ(x+)
σt(x)

and Φ, φ are cdf and pdf of standard normal.

28

Other acquisition function

. Thompson sampling

. Sample a path s ∼ GP(µt , σt)

. Acquisition αt(x) = s(x)

. Empirically works often better

. Expected Improvement [Mockus, 1982]

. µt(x
+) is the best mean estimate

. αt(x) = E[max(0, f (x)− f (x+)|Dt]

. Analytical solution: αt(x) = (µt(x)− µ(x+))Φ(Z) + σ(x)φ(Z) where,

Z = µt−µ(x+)
σt(x)

and Φ, φ are cdf and pdf of standard normal.

28

Curse of dimensionality

. How do we apply this to multiple dimensions?

. Naturally, αt(x) can be defined in any X ⊂ Rd

. Practically, αt(x) cannot be optimized using a grid optimizer.

. The size of the grid grows nd and computational needs grow as (nd)3, where

n number of grid points in 1D.

. One can use a first-order heuristic to optimize the acquisition function locally.

. More advanced methods: Look [Mutný and Krause, 2018] or visit:

Talk of Johannes tomorrow on BO for SwissFEL.

29

Curse of dimensionality

. How do we apply this to multiple dimensions?

. Naturally, αt(x) can be defined in any X ⊂ Rd

. Practically, αt(x) cannot be optimized using a grid optimizer.

. The size of the grid grows nd and computational needs grow as (nd)3, where

n number of grid points in 1D.

. One can use a first-order heuristic to optimize the acquisition function locally.

. More advanced methods: Look [Mutný and Krause, 2018] or visit:

Talk of Johannes tomorrow on BO for SwissFEL.

29

Curse of dimensionality

. How do we apply this to multiple dimensions?

. Naturally, αt(x) can be defined in any X ⊂ Rd

. Practically, αt(x) cannot be optimized using a grid optimizer.

. The size of the grid grows nd and computational needs grow as (nd)3, where

n number of grid points in 1D.

. One can use a first-order heuristic to optimize the acquisition function locally.

. More advanced methods: Look [Mutný and Krause, 2018] or visit:

Talk of Johannes tomorrow on BO for SwissFEL.

29

Curse of dimensionality

. How do we apply this to multiple dimensions?

. Naturally, αt(x) can be defined in any X ⊂ Rd

. Practically, αt(x) cannot be optimized using a grid optimizer.

. The size of the grid grows nd and computational needs grow as (nd)3, where

n number of grid points in 1D.

. One can use a first-order heuristic to optimize the acquisition function locally.

. More advanced methods: Look [Mutný and Krause, 2018] or visit:

Talk of Johannes tomorrow on BO for SwissFEL.

29

Curse of dimensionality

. How do we apply this to multiple dimensions?

. Naturally, αt(x) can be defined in any X ⊂ Rd

. Practically, αt(x) cannot be optimized using a grid optimizer.

. The size of the grid grows nd and computational needs grow as (nd)3, where

n number of grid points in 1D.

. One can use a first-order heuristic to optimize the acquisition function locally.

. More advanced methods: Look [Mutný and Krause, 2018] or visit:

Talk of Johannes tomorrow on BO for SwissFEL.

29

Curse of dimensionality

. How do we apply this to multiple dimensions?

. Naturally, αt(x) can be defined in any X ⊂ Rd

. Practically, αt(x) cannot be optimized using a grid optimizer.

. The size of the grid grows nd and computational needs grow as (nd)3, where

n number of grid points in 1D.

. One can use a first-order heuristic to optimize the acquisition function locally.

. More advanced methods: Look [Mutný and Krause, 2018] or visit:

Talk of Johannes tomorrow on BO for SwissFEL.

29

Curse of dimensionality

. How do we apply this to multiple dimensions?

. Naturally, αt(x) can be defined in any X ⊂ Rd

. Practically, αt(x) cannot be optimized using a grid optimizer.

. The size of the grid grows nd and computational needs grow as (nd)3, where

n number of grid points in 1D.

. One can use a first-order heuristic to optimize the acquisition function locally.

. More advanced methods: Look [Mutný and Krause, 2018] or visit:

Talk of Johannes tomorrow on BO for SwissFEL.

29

Part II, Programming: Lets try it out.

29

Ekström, A., Forssén, C., Dimitrakakis, C., Dubhashi, D., Johansson, H.,

Muhammad, A., Salomonsson, H., and Schliep, A. (2019).

Bayesian optimization in ab initio nuclear physics.

arXiv preprint arXiv:1902.00941.

Kirschner, J., Mutný, M., Hiller, N., Ischebeck, R., and Krause, A. (2019).

Adaptive and safe bayesian optimization in high dimensions via

one-dimensional subspaces.

McIntire, M., Cope, T., Ratner, D., and Ermon, S. (2016).

Bayesian optimization of fel performance at lcls.

Proceedings of IPAC2016.

Mockus, J. (1982).

The bayesian approach to global optimization.

System Modeling and Optimization, pages 473–481.

29

Mutný, M. and Krause, A. (2018).

Efficient high dimensional bayesian optimization with additivity and

quadrature fourier features.

In Neural and Information Processing Systems (NeurIPS).

Rasmussen, C. E. (2004).

Gaussian processes in machine learning.

In Advanced lectures on machine learning, pages 63–71. Springer.

Romero, P. A., Krause, A., and Arnold, F. H. (2013).

Navigating the protein fitness landscape with gaussian processes.

Proceedings of the National Academy of Sciences (PNAS), 110(3).

Schneider, P.-I., Santiago, X. G., Soltwisch, V., Hammerschmidt, M., Burger,

S., and Rockstuhl, C. (2018).

29

Benchmarking five global optimization approaches for nano-optical

shape optimization and parameter reconstruction.

29

