Tutorial on Bayesian Optimization

Johannes Kirschner and Mojmír Mutný

February 26th, 2019
ICFA ML Workshop, PSI

Motivating Application: Parameter Tuning of Accelerator

Maximize (photon) signal, minimize losses, . . . [McIntire et al., 2016, Kirschner et al., 2019]

Motivating Application: Experimental Design

Optimize design parameters, e.g. nano materials, molecules,... [Schneider et al., 2018, Romero et al., 2013]

Motivating Application: Fitting Physical Models

Experimental data on $N N$ scattering
Optimize model parameters to fit observational data [Ekström et al., 2019]

Optimizing Black-Box Functions

Maximize a Black box function:

$$
\mathcal{X} \longrightarrow f \rightsquigarrow f(x)+\epsilon
$$

Optimizing Black-Box Functions

Maximize a Black box function:

$$
\mathcal{X} \longrightarrow f \rightsquigarrow f(x)+\epsilon
$$

\triangleright Parameter space $\mathcal{X} \subset \mathbb{R}^{d}$, can also be combinatorial
\triangleright Little assumptions on f : non-convex, multiple local optima, ...
\triangleright No analytical formula for f
\triangleright No access to gradients

Optimizing Black-Box Functions

Maximize a Black box function:

$$
\mathcal{X} \longrightarrow f \rightsquigarrow f(x)+\epsilon
$$

\triangleright Parameter space $\mathcal{X} \subset \mathbb{R}^{d}$, can also be combinatorial
\triangleright Little assumptions on f : non-convex, multiple local optima, ...
\triangleright No analytical formula for f
\triangleright No access to gradients
Only get (noisy) evaluations $y=f(x)+\epsilon$
\triangleright Evaluations of f are 'expensive'

Bayesian Optimization: Overview

Prior data set: \mathcal{D}_{0}

Bayesian Optimization: Overview

Prior data set: \mathcal{D}_{0}
For each step $t=1,2,3, \ldots, T$,
Step 1: Build probabilistic model \hat{f}_{t} of the objective using data \mathcal{D}_{t-1}
\triangleright Gaussian process regression (Part I)

Bayesian Optimization: Overview

Prior data set: \mathcal{D}_{0}
For each step $t=1,2,3, \ldots, T$,
Step 1: Build probabilistic model \hat{f}_{t} of the objective using data \mathcal{D}_{t-1}
\triangleright Gaussian process regression (Part I)
Step 2: Reduce model uncertainty about maximizers
\triangleright Search guided by acquisition function $x_{t}=\underset{x \in \mathcal{X}}{\arg \max } \alpha\left(x \mid \hat{f}_{t}\right)$ (Part II)

Bayesian Optimization: Overview

Prior data set: \mathcal{D}_{0}
For each step $t=1,2,3, \ldots, T$,
Step 1: Build probabilistic model \hat{f}_{t} of the objective using data \mathcal{D}_{t-1}
\triangleright Gaussian process regression (Part I)
Step 2: Reduce model uncertainty about maximizers
\triangleright Search guided by acquisition function $x_{t}=\underset{x \in \mathcal{X}}{\arg \max } \alpha\left(x \mid \hat{f}_{t}\right)$ (Part II)
Step 3: Observe (noisy) measurement $y_{t}=f\left(x_{t}\right)+\epsilon$
\triangleright Augment data $\mathcal{D}_{t}=\mathcal{D}_{t-1} \cup\left\{\left(x_{t}, y_{t}\right)\right\}$

Bayesian Optimization: Overview

Prior data set: \mathcal{D}_{0}
For each step $t=1,2,3, \ldots, T$,
Step 1: Build probabilistic model \hat{f}_{t} of the objective using data \mathcal{D}_{t-1}
\triangleright Gaussian process regression (Part I)
Step 2: Reduce model uncertainty about maximizers
\triangleright Search guided by acquisition function $x_{t}=\underset{x \in \mathcal{X}}{\arg \max } \alpha\left(x \mid \hat{f}_{t}\right)$ (Part II)
Step 3: Observe (noisy) measurement $y_{t}=f\left(x_{t}\right)+\epsilon$
\triangleright Augment data $\mathcal{D}_{t}=\mathcal{D}_{t-1} \cup\left\{\left(x_{t}, y_{t}\right)\right\}$

At final time T : Use model to find best predicted setting.

Part I: Gaussian Process Regression

Bayesian Statistics

Prior: Distribution $\mathcal{P}(f)$ over f

- "prior belief"

Bayesian Statistics

Prior: Distribution $\mathcal{P}(f)$ over f
\triangleright "prior belief"
Data likelihood: $\mathcal{P}\left(D_{t} \mid f\right)$
\triangleright e.g. $y \sim f(x)+\mathcal{N}(0,1)$

Bayesian Statistics

Prior: Distribution $\mathcal{P}(f)$ over f

- "prior belief"

Data likelihood: $\mathcal{P}\left(D_{t} \mid f\right)$
\triangleright e.g. $y \sim f(x)+\mathcal{N}(0,1)$
Posterior distribution: $\mathcal{P}\left(f \mid D_{t}\right)=\frac{\mathcal{P}\left(D_{t} \mid f\right) \mathcal{P}(f)}{\mathcal{P}\left(D_{t}\right)}$
\triangleright Bayes' theorem
\triangleright The posterior distribution captures our belief in f after seeing the data.

Gaussian Processes

Normal dist. (1-D Gaussian)

Multivariate normal (n-D Gaussian)

Gaussian process (∞-D Gaussian)
\triangleright Gaussian process (GP) $=$ normal distribution over functions

Gaussian Processes

\triangleright Gaussian process (GP) $=$ normal distribution over functions
\triangleright Finite marginals $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ are multivariate Gaussians

Gaussian Processes

\triangleright Gaussian process (GP) $=$ normal distribution over functions
\triangleright Finite marginals $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ are multivariate Gaussians
\triangleright Parameterized by covariance function (kernel) $k\left(x, x^{\prime}\right)=\operatorname{Cov}\left(f(x), f\left(x^{\prime}\right)\right)$

Gaussian Process on Finite Domain

Finite domain: $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$

Gaussian Process on Finite Domain

Finite domain: $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$
Definition: f is a Gaussian process with mean $\mu(x)$ and kernel $k\left(x, x^{\prime}\right)$ \triangleright if $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ is multivariate normal $\mathcal{N}(m, K)$ with

Gaussian Process on Finite Domain

Finite domain: $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$
Definition: f is a Gaussian process with mean $\mu(x)$ and kernel $k\left(x, x^{\prime}\right)$ \triangleright if $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ is multivariate normal $\mathcal{N}(m, K)$ with
\triangleright mean $m=\left[\mu\left(x_{1}\right), \ldots \mu\left(x_{n}\right)\right]$,

Gaussian Process on Finite Domain

Finite domain: $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$
Definition: f is a Gaussian process with mean $\mu(x)$ and kernel $k\left(x, x^{\prime}\right)$
\triangleright if $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ is multivariate normal $\mathcal{N}(m, K)$ with
\triangleright mean $m=\left[\mu\left(x_{1}\right), \ldots \mu\left(x_{n}\right)\right]$,
\triangleright covariance $K=\left[k\left(x_{i}, x_{j}\right)\right]_{i, j=1, \ldots, n}$.

Gaussian Process on Finite Domain

Finite domain: $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$
Definition: f is a Gaussian process with mean $\mu(x)$ and kernel $k\left(x, x^{\prime}\right)$
\triangleright if $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ is multivariate normal $\mathcal{N}(m, K)$ with
\triangleright mean $m=\left[\mu\left(x_{1}\right), \ldots \mu\left(x_{n}\right)\right]$,
\triangleright covariance $K=\left[k\left(x_{i}, x_{j}\right)\right]_{i, j=1, \ldots, n}$.
Denote $f \sim G P(m, k)$.

Gaussian Process on Continuous Domain

Continuous domain: $\mathcal{X} \subset \mathbb{R}^{d}$

Gaussian Process on Continuous Domain

Continuous domain: $\mathcal{X} \subset \mathbb{R}^{d}$
Definition: f is a Gaussian process with mean $\mu(x)$ and kernel $k\left(x, x^{\prime}\right)$ if \triangleright for any finite subset $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$,

Gaussian Process on Continuous Domain

Continuous domain: $\mathcal{X} \subset \mathbb{R}^{d}$
Definition: f is a Gaussian process with mean $\mu(x)$ and kernel $k\left(x, x^{\prime}\right)$ if \triangleright for any finite subset $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$,
$\triangleright f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ is multivariate normal $\mathcal{N}(m, K)$ with
\triangleright mean $m=\left[\mu\left(x_{1}\right), \ldots \mu\left(x_{n}\right)\right]$,
\triangleright covariance $K=\left[k\left(x_{i}, x_{j}\right)\right]_{i, j=1, \ldots, n}$.

Gaussian Process on Continuous Domain

Continuous domain: $\mathcal{X} \subset \mathbb{R}^{d}$
Definition: f is a Gaussian process with mean $\mu(x)$ and kernel $k\left(x, x^{\prime}\right)$ if
\triangleright for any finite subset $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathcal{X}$,
$\triangleright f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ is multivariate normal $\mathcal{N}(m, K)$ with
\triangleright mean $m=\left[\mu\left(x_{1}\right), \ldots \mu\left(x_{n}\right)\right]$,
\triangleright covariance $K=\left[k\left(x_{i}, x_{j}\right)\right]_{i, j=1, \ldots, n}$.
In practice we always evaluate/sample the GP on finite (grid) domains.

Samples from a Gaussian Process

Samples from a Gaussian Process

Samples from a Gaussian Process

Gaussian Process Regression

Prior: GP prior $\mathcal{P}(f)=G P(\mu, k)$ over f
\triangleright "prior belief" with prior mean μ and kernel k

Gaussian Process Regression

Prior: GP prior $\mathcal{P}(f)=G P(\mu, k)$ over f
\triangleright "prior belief" with prior mean μ and kernel k
Gaussian likelihood: iid Gaussian noise:
$\triangleright \mathcal{P}\left(\left\{y_{1}, \ldots, y_{m}\right\} \mid f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)=\prod_{i} \mathcal{N}\left(f\left(x_{i}\right), \rho^{2}\right)$
\triangleright e.g. $y \sim f(x)+\mathcal{N}\left(0, \rho^{2}\right)$

Gaussian Process Regression

Prior: GP prior $\mathcal{P}(f)=G P(\mu, k)$ over f
\triangleright "prior belief" with prior mean μ and kernel k
Gaussian likelihood: iid Gaussian noise:

$$
\begin{aligned}
& \triangleright \mathcal{P}\left(\left\{y_{1}, \ldots, y_{m}\right\} \mid f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)=\prod_{i} \mathcal{N}\left(f\left(x_{i}\right), \rho^{2}\right) \\
& \triangleright \text { e.g. } y \sim f(x)+\mathcal{N}\left(0, \rho^{2}\right)
\end{aligned}
$$

Posterior distribution: $\mathcal{P}\left(f \mid D_{t}\right)=G P\left(\mu_{n}, k_{n}\right)$
\triangleright Posterior distributions is a again a GP!
\triangleright Closed form updates exist.
\triangleright Excellent book (free pdf): [Rasmussen, 2004, Chapter 2]

Marginals

Posterior distribution: $\mathcal{P}\left(f \mid D_{t}\right)=G P\left(\mu_{n}, k_{n}\right)$
\triangleright Remember: Finite marginals are Gaussians!
\triangleright Marginal posterior distribution at any point x is $\mathcal{N}\left(\mu_{n}(x), k_{n}(x, x)\right)$

Marginals

Posterior distribution: $\mathcal{P}\left(f \mid D_{t}\right)=G P\left(\mu_{n}, k_{n}\right)$

\triangleright Remember: Finite marginals are Gaussians!
\triangleright Marginal posterior distribution at any point x is $\mathcal{N}\left(\mu_{n}(x), k_{n}(x, x)\right)$

Posterior variance $\sigma_{n}(x)^{2}=k_{n}(x, x)$ quantifies uncertainty

Kernel Functions

Kernel k needs to satisfy some technical assumptions:
\triangleright symmetric
\triangleright positive semidefinite.

Kernel Functions

Kernel k needs to satisfy some technical assumptions:
\triangleright symmetric
\triangleright positive semidefinite.
Kernels are similarity measures between points and encodes smoothness.

Kernel Functions: Squared Exponential (RBF)

Squared exponential kernel: $k\left(x, x^{\prime}\right)=\exp \left(-\left\|x-x^{\prime}\right\|^{2} / l^{2}\right)$
$\triangleright \mid$ is called lengthscale (or bandwidth)

Kernel Functions: Exponential

Exponential
Posterior Samples

Kernel Function

Exponential kernel: $k\left(x, x^{\prime}\right)=\exp \left(-\left\|x-x^{\prime}\right\| / /^{2}\right)$
$\triangleright \mid$ is called lengthscale (or bandwidth)

Kernel Functions: Matern

Matern32

Matern32 kernel: $k\left(x, x^{\prime}\right)=\left(1+\frac{\sqrt{3}\|x-x\|}{l}\right) \exp \left(-\frac{\sqrt{3}\left\|x-x^{\prime}\right\|}{l}\right)$
$\triangleright \mid$ is called lengthscale (or bandwidth)
\triangleright Matern52, etc: Family of kernels with increasing smoothness

Kernel Functions: Linear

Linear + Bias
Model Uncertainty

Linear kernel: $k\left(x, x^{\prime}\right)=x^{\top} x^{\prime}$
\triangleright Recovers (Bayesian) linear regression!
Feature kernel: $k\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right)$
\triangleright E.g. polynomials $\Phi(x)=\left[1, x, x^{2}\right]$

Kernel Parameters I

Noise variance

\triangleright Easy to measure
\triangleright Slightly larger value increases robustness

Kernel Parameters I

Noise variance

\triangleright Easy to measure
\triangleright Slightly larger value increases robustness

Kernel

\triangleright Smoothness of function
\triangleright RBF smooth functions
\triangleright Matern32, Matern52, less smooth, often work well in pratice
\triangleright Can also combine kernels, e.g. RBF $+5 \cdot$ Matern32
\triangleright Each kernel has its own hyper-parameters

Kernel Parameters II

Normalizes objective (y-values)

Prior variance

\triangleright Expected range of objective values
\triangleright Keep fixed (to 1) and normalize data

Kernel Parameters II

Normalizes objective (y-values)

Prior variance

\triangleright Expected range of objective values
\triangleright Keep fixed (to 1) and normalize data

Lengthscale
Normalizes domain (x-values)
\triangleright Smoothness of function
\triangleright If too large, might not model the objective well
\triangleright Can pick different lengthscales for different dimensions (ARD)
\triangleright Normalizes the domain

How to choose parameters?

Try and error

\triangleright Parameters usually more intuitive to tune

How to choose parameters?

Try and error

\triangleright Parameters usually more intuitive to tune

Point estimates

\triangleright Maximum a posteriori estimation: $\theta^{*}=\arg \max _{\theta} \mathcal{P}\left(D_{t} \mid \theta\right) \mathcal{P}(\theta)$
\triangleright Requires 'representative' initial data
\triangleright Might not work well with data collected while optimizing

How to choose parameters?

Try and error

\triangleright Parameters usually more intuitive to tune

Point estimates

\triangleright Maximum a posteriori estimation: $\theta^{*}=\arg \max _{\theta} \mathcal{P}\left(D_{t} \mid \theta\right) \mathcal{P}(\theta)$
\triangleright Requires 'representative' initial data
\triangleright Might not work well with data collected while optimizing

Bayesian approach

\triangleright Define 'reasonable' prior distribution $\mathcal{P}(\theta)$ over θ
\triangleright Marginalize predictions over posterior $\mathcal{P}\left(\theta \mid D_{t}\right)$
\triangleright More expensive to compute, no closed form
\triangleright Eliminates hyperparameters

Notebook Session: GP Regression using GPy

Part II: Bayesian Optimization

Optimization - recap

\triangleright Assume function $f(x)$ where $x \in \mathcal{X}$.

Optimization - recap

\triangleright Assume function $f(x)$ where $x \in \mathcal{X}$.
\triangleright Noisy zero-order oracle $\Longleftrightarrow y=f(x)+\epsilon$

Optimization - recap

\triangleright Assume function $f(x)$ where $x \in \mathcal{X}$.
\triangleright Noisy zero-order oracle $\Longleftrightarrow y=f(x)+\epsilon$
\triangleright Grid approach fails:

Optimization - recap

\triangleright Assume function $f(x)$ where $x \in \mathcal{X}$.
\triangleright Noisy zero-order oracle $\Longleftrightarrow y=f(x)+\epsilon$
\triangleright Grid approach fails:
\triangleright due to noise

Optimization - recap

\triangleright Assume function $f(x)$ where $x \in \mathcal{X}$.
\triangleright Noisy zero-order oracle $\Longleftrightarrow y=f(x)+\epsilon$
\triangleright Grid approach fails:
\triangleright due to noise

Optimization - recap

\triangleright Assume function $f(x)$ where $x \in \mathcal{X}$.
\triangleright Noisy zero-order oracle $\Longleftrightarrow y=f(x)+\epsilon$
\triangleright Grid approach fails:
\triangleright due to noise

\triangleright due to efficiency [to come]

Optimization - recap

\triangleright Assume function $f(x)$ where $x \in \mathcal{X}$.
\triangleright Noisy zero-order oracle $\Longleftrightarrow y=f(x)+\epsilon$
\triangleright Grid approach fails:
\triangleright due to noise

\triangleright due to efficiency [to come]

GPs: Avoid not necessary evaluations

Bayesian Optimization: Overview

Prior data set: \mathcal{D}_{0}

Bayesian Optimization: Overview

Prior data set: \mathcal{D}_{0}
For each step $t=1,2,3, \ldots, T$,
Step 1: Build probabilistic model \hat{f}_{t} of the objective using data \mathcal{D}_{t-1}
\triangleright Gaussian process regression (Part I)

Bayesian Optimization: Overview

Prior data set: \mathcal{D}_{0}
For each step $t=1,2,3, \ldots, T$,
Step 1: Build probabilistic model \hat{f}_{t} of the objective using data \mathcal{D}_{t-1}
\triangleright Gaussian process regression (Part I)
Step 2: Reduce model uncertainty about maximizers
\triangleright Search guided by acquisition function $x_{t}=\underset{x \in \mathcal{X}}{\arg \max } \alpha\left(x \mid \hat{f}_{t}\right)$ (Part II)

Bayesian Optimization: Overview

Prior data set: \mathcal{D}_{0}
For each step $t=1,2,3, \ldots, T$,
Step 1: Build probabilistic model \hat{f}_{t} of the objective using data \mathcal{D}_{t-1}
\triangleright Gaussian process regression (Part I)
Step 2: Reduce model uncertainty about maximizers
\triangleright Search guided by acquisition function $x_{t}=\underset{x \in \mathcal{X}}{\arg \max } \alpha\left(x \mid \hat{f}_{t}\right)$ (Part II)
Step 3: Observe (noisy) measurement $y_{t}=f\left(x_{t}\right)+\epsilon$
\triangleright Augment data $\mathcal{D}_{t}=\mathcal{D}_{t-1} \cup\left\{\left(x_{t}, y_{t}\right)\right\}$

Bayesian Optimization: Overview

Prior data set: \mathcal{D}_{0}
For each step $t=1,2,3, \ldots, T$,
Step 1: Build probabilistic model \hat{f}_{t} of the objective using data \mathcal{D}_{t-1}
\triangleright Gaussian process regression (Part I)
Step 2: Reduce model uncertainty about maximizers
\triangleright Search guided by acquisition function $x_{t}=\underset{x \in \mathcal{X}}{\arg \max } \alpha\left(x \mid \hat{f}_{t}\right)$ (Part II)
Step 3: Observe (noisy) measurement $y_{t}=f\left(x_{t}\right)+\epsilon$
\triangleright Augment data $\mathcal{D}_{t}=\mathcal{D}_{t-1} \cup\left\{\left(x_{t}, y_{t}\right)\right\}$

At final time T : Use model to find best predicted setting.

Upper Confidence Bound (UCB)

$\triangleright \mu_{t} \ldots$ posterior mean after seeing t points

Upper Confidence Bound (UCB)

$\triangleright \mu_{t} \ldots$ posterior mean after seeing t points
$\triangleright \sigma_{t} \ldots$ posterior standard deviation after seeing t points

Upper Confidence Bound (UCB)

$\triangleright \quad \mu_{t} \ldots$ posterior mean after seeing t points
$\triangleright \sigma_{t} \ldots$ posterior standard deviation after seeing t points
$\triangleright \beta \in \mathbb{R}$ real parameter trading exploration and exploitation [see later]

Upper Confidence Bound (UCB)

$\triangleright \mu_{t} \ldots$ posterior mean after seeing t points
$\triangleright \sigma_{t} \ldots$ posterior standard deviation after seeing t points
$\triangleright \beta \in \mathbb{R}$ real parameter trading exploration and exploitation [see later]

$$
\alpha_{t}(x)=\mu_{t}(x)+\beta \sigma_{t}(x)
$$

\triangleright How to optimize $\alpha_{t}(x)$?
\triangleright discretize search space \mathcal{X}

Upper Confidence Bound (UCB)

$\triangleright \mu_{t} \ldots$ posterior mean after seeing t points
$\triangleright \sigma_{t} \ldots$ posterior standard deviation after seeing t points
$\triangleright \beta \in \mathbb{R}$ real parameter trading exploration and exploitation [see later]

$$
\alpha_{t}(x)=\mu_{t}(x)+\beta \sigma_{t}(x)
$$

\triangleright How to optimize $\alpha_{t}(x)$?
\triangleright discretize search space \mathcal{X}
\triangleright first-order heuristics

Upper Confidence Bound (UCB)

$\triangleright \quad \mu_{t} \ldots$ posterior mean after seeing t points
$\triangleright \sigma_{t} \ldots$ posterior standard deviation after seeing t points
$\triangleright \beta \in \mathbb{R}$ real parameter trading exploration and exploitation [see later]

$$
\alpha_{t}(x)=\mu_{t}(x)+\beta \sigma_{t}(x)
$$

\triangleright How to optimize $\alpha_{t}(x)$?
\triangleright discretize search space \mathcal{X}
\triangleright first-order heuristics

UCB: Example

Consequence of β

\triangleright What is β ?

Consequence of β

\triangleright What is β ?
$\triangleright \beta$ trades exploration and exploitation

Consequence of β

\triangleright What is β ?
$\triangleright \beta$ trades exploration and exploitation
\triangleright Theoretical value that ensure global convergence (right model assumption):

$$
\beta_{t}=2 \log \left(\gamma_{t}+1\right)
$$

Consequence of β

\triangleright What is β ?
$\triangleright \beta$ trades exploration and exploitation
\triangleright Theoretical value that ensure global convergence (right model assumption):

$$
\beta_{t}=2 \log \left(\gamma_{t}+1\right)
$$

where γ_{t} is maximum information gain, for RBF kernel $\gamma_{t}=C \log (T)^{d+1}$

Consequence of β

\triangleright What is β ?
$\triangleright \beta$ trades exploration and exploitation
\triangleright Theoretical value that ensure global convergence (right model assumption):

$$
\beta_{t}=2 \log \left(\gamma_{t}+1\right)
$$

where γ_{t} is maximum information gain, for RBF kernel $\gamma_{t}=C \log (T)^{d+1}$
\triangleright (Very common) heuristic approach: $\beta \approx 2$.

Consequence of β

\triangleright What is β ?
$\triangleright \beta$ trades exploration and exploitation
\triangleright Theoretical value that ensure global convergence (right model assumption):

$$
\beta_{t}=2 \log \left(\gamma_{t}+1\right)
$$

where γ_{t} is maximum information gain, for RBF kernel $\gamma_{t}=C \log (T)^{d+1}$
\triangleright (Very common) heuristic approach: $\beta \approx 2$.
$\triangleright \beta$ too small \Longrightarrow gets stuck/hill climbing

Consequence of β

\triangleright What is β ?
$\triangleright \beta$ trades exploration and exploitation
\triangleright Theoretical value that ensure global convergence (right model assumption):

$$
\beta_{t}=2 \log \left(\gamma_{t}+1\right)
$$

where γ_{t} is maximum information gain, for RBF kernel $\gamma_{t}=C \log (T)^{d+1}$
\triangleright (Very common) heuristic approach: $\beta \approx 2$.
$\triangleright \beta$ too small \Longrightarrow gets stuck/hill climbing
$\triangleright \beta$ too high \Longrightarrow incremental grid search

Consequence of β II

\triangleright Hill Climbing - β small

Consequence of β II

\triangleright Hill Climbing - β small

Consequence of β II

\triangleright Hill Climbing - β small

Consequence of β II

\triangleright Hill Climbing - β small

Consequence of β II

\triangleright Hill Climbing - β small

Consequence of β II

\triangleright Hill Climbing - β small

Consequence of β II

\triangleright Hill Climbing - β small

Consequence of β II

\triangleright Hill Climbing - β small

Consequence of β II

\triangleright Hill Climbing - β small

Consequence of β II

\triangleright Hill Climbing - β small

Consequence of β II

\triangleright Hill Climbing - β small

Consequence of β II

\triangleright Hill Climbing - β small
Bayesian Optimization Example

\triangleright Sequential Grid - β large

Consequence of β II

\triangleright Hill Climbing - β small
Bayesian Optimization Example

\triangleright Sequential Grid - β large

Consequence of β II

\triangleright Hill Climbing - β small
Bayesian Optimization Example

\triangleright Sequential Grid - β large

Consequence of β II

\triangleright Hill Climbing - β small
Bayesian Optimization Example

\triangleright Sequential Grid - β large

Consequence of β II

\triangleright Hill Climbing - β small
Bayesian Optimization Example

\triangleright Sequential Grid - β large

Consequence of β II

\triangleright Hill Climbing - β small
Bayesian Optimization Example

\triangleright Sequential Grid - β large

Consequence of β II

\triangleright Hill Climbing - β small
Bayesian Optimization Example

\triangleright Sequential Grid - β large

Other acquisition function

\triangleright Thompson sampling

Other acquisition function

\triangleright Thompson sampling
\triangleright Sample a path $s \sim \operatorname{GP}\left(\mu_{t}, \sigma_{t}\right)$

Other acquisition function

- Thompson sampling
\triangleright Sample a path $s \sim \operatorname{GP}\left(\mu_{t}, \sigma_{t}\right)$
\triangleright Acquisition $\alpha_{t}(x)=s(x)$

Other acquisition function

\triangleright Thompson sampling
\triangleright Sample a path $s \sim \operatorname{GP}\left(\mu_{t}, \sigma_{t}\right)$
\triangleright Acquisition $\alpha_{t}(x)=s(x)$
\triangleright Empirically works often better

Other acquisition function

\triangleright Thompson sampling
\triangleright Sample a path $s \sim \operatorname{GP}\left(\mu_{t}, \sigma_{t}\right)$
\triangleright Acquisition $\alpha_{t}(x)=s(x)$

- Empirically works often better
\triangleright Expected Improvement [Mockus, 1982]

Other acquisition function

\triangleright Thompson sampling
\triangleright Sample a path $s \sim \operatorname{GP}\left(\mu_{t}, \sigma_{t}\right)$
\triangleright Acquisition $\alpha_{t}(x)=s(x)$
\triangleright Empirically works often better
\triangleright Expected Improvement [Mockus, 1982]
$\triangleright \mu_{t}\left(x^{+}\right)$is the best mean estimate

Other acquisition function

\triangleright Thompson sampling
\triangleright Sample a path $s \sim \operatorname{GP}\left(\mu_{t}, \sigma_{t}\right)$
\triangleright Acquisition $\alpha_{t}(x)=s(x)$
\triangleright Empirically works often better
\triangleright Expected Improvement [Mockus, 1982]
$\triangleright \mu_{t}\left(x^{+}\right)$is the best mean estimate
$\triangleright \alpha_{t}(x)=\mathbb{E}\left[\max \left(0, f(x)-f\left(x^{+}\right) \mid \mathcal{D}_{t}\right]\right.$

Other acquisition function

\triangleright Thompson sampling
\triangleright Sample a path $s \sim \operatorname{GP}\left(\mu_{t}, \sigma_{t}\right)$
\triangleright Acquisition $\alpha_{t}(x)=s(x)$

- Empirically works often better
\triangleright Expected Improvement [Mockus, 1982]
$\triangleright \mu_{t}\left(x^{+}\right)$is the best mean estimate
$\triangleright \alpha_{t}(x)=\mathbb{E}\left[\max \left(0, f(x)-f\left(x^{+}\right) \mid \mathcal{D}_{t}\right]\right.$
\triangleright Analytical solution: $\alpha_{t}(x)=\left(\mu_{t}(x)-\mu\left(x^{+}\right)\right) \Phi(Z)+\sigma(x) \phi(Z)$ where,
$Z=\frac{\mu_{t}-\mu\left(x^{+}\right)}{\sigma_{t}(x)}$ and Φ, ϕ are cdf and pdf of standard normal.

Other acquisition function

\triangleright Thompson sampling
\triangleright Sample a path $s \sim \operatorname{GP}\left(\mu_{t}, \sigma_{t}\right)$
\triangleright Acquisition $\alpha_{t}(x)=s(x)$

- Empirically works often better
\triangleright Expected Improvement [Mockus, 1982]
$\triangleright \mu_{t}\left(x^{+}\right)$is the best mean estimate
$\triangleright \alpha_{t}(x)=\mathbb{E}\left[\max \left(0, f(x)-f\left(x^{+}\right) \mid \mathcal{D}_{t}\right]\right.$
\triangleright Analytical solution: $\alpha_{t}(x)=\left(\mu_{t}(x)-\mu\left(x^{+}\right)\right) \Phi(Z)+\sigma(x) \phi(Z)$ where,
$Z=\frac{\mu_{t}-\mu\left(x^{+}\right)}{\sigma_{t}(x)}$ and Φ, ϕ are cdf and pdf of standard normal.

Curse of dimensionality

- How do we apply this to multiple dimensions?

Curse of dimensionality

\triangleright How do we apply this to multiple dimensions?
\triangleright Naturally, $\alpha_{t}(x)$ can be defined in any $\mathcal{X} \subset \mathbb{R}^{d}$

Curse of dimensionality

\triangleright How do we apply this to multiple dimensions?
\triangleright Naturally, $\alpha_{t}(x)$ can be defined in any $\mathcal{X} \subset \mathbb{R}^{d}$
\triangleright Practically, $\alpha_{t}(x)$ cannot be optimized using a grid optimizer.

Curse of dimensionality

\triangleright How do we apply this to multiple dimensions?
\triangleright Naturally, $\alpha_{t}(x)$ can be defined in any $\mathcal{X} \subset \mathbb{R}^{d}$
\triangleright Practically, $\alpha_{t}(x)$ cannot be optimized using a grid optimizer.
\triangleright The size of the grid grows n^{d} and computational needs grow as $\left(n^{d}\right)^{3}$, where n number of grid points in 1D.

Curse of dimensionality

\triangleright How do we apply this to multiple dimensions?
\triangleright Naturally, $\alpha_{t}(x)$ can be defined in any $\mathcal{X} \subset \mathbb{R}^{d}$
\triangleright Practically, $\alpha_{t}(x)$ cannot be optimized using a grid optimizer.
\triangleright The size of the grid grows n^{d} and computational needs grow as $\left(n^{d}\right)^{3}$, where n number of grid points in 1D.
\triangleright One can use a first-order heuristic to optimize the acquisition function locally.

Curse of dimensionality

\triangleright How do we apply this to multiple dimensions?
\triangleright Naturally, $\alpha_{t}(x)$ can be defined in any $\mathcal{X} \subset \mathbb{R}^{d}$
\triangleright Practically, $\alpha_{t}(x)$ cannot be optimized using a grid optimizer.
\triangleright The size of the grid grows n^{d} and computational needs grow as $\left(n^{d}\right)^{3}$, where n number of grid points in 1D.
\triangleright One can use a first-order heuristic to optimize the acquisition function locally.
\triangleright More advanced methods: Look [Mutný and Krause, 2018] or visit:
Talk of Johannes tomorrow on BO for SwissFEL.

Curse of dimensionality

\triangleright How do we apply this to multiple dimensions?
\triangleright Naturally, $\alpha_{t}(x)$ can be defined in any $\mathcal{X} \subset \mathbb{R}^{d}$
\triangleright Practically, $\alpha_{t}(x)$ cannot be optimized using a grid optimizer.
\triangleright The size of the grid grows n^{d} and computational needs grow as $\left(n^{d}\right)^{3}$, where n number of grid points in 1D.
\triangleright One can use a first-order heuristic to optimize the acquisition function locally.
\triangleright More advanced methods: Look [Mutný and Krause, 2018] or visit:
Talk of Johannes tomorrow on BO for SwissFEL.

Part II, Programming: Lets try it out.

Ekström, A., Forssén, C., Dimitrakakis, C., Dubhashi, D., Johansson, H., Muhammad, A., Salomonsson, H., and Schliep, A. (2019).
Bayesian optimization in ab initio nuclear physics.
arXiv preprint arXiv:1902.00941.
国 Kirschner, J., Mutný, M., Hiller, N., Ischebeck, R., and Krause, A. (2019). Adaptive and safe bayesian optimization in high dimensions via one-dimensional subspaces.

围 McIntire, M., Cope, T., Ratner, D., and Ermon, S. (2016).
Bayesian optimization of fel performance at Icls. Proceedings of IPAC2016.

- Mockus, J. (1982).

The bayesian approach to global optimization.
System Modeling and Optimization, pages 473-481.

国 Mutný，M．and Krause，A．（2018）．
Efficient high dimensional bayesian optimization with additivity and quadrature fourier features．
In Neural and Information Processing Systems（NeurIPS）．
Re Rasmussen，C．E．（2004）．
Gaussian processes in machine learning．
In Advanced lectures on machine learning，pages 63－71．Springer．
园 Romero，P．A．，Krause，A．，and Arnold，F．H．（2013）．
Navigating the protein fitness landscape with gaussian processes．
Proceedings of the National Academy of Sciences（PNAS），110（3）．
圁 Schneider，P．－I．，Santiago，X．G．，Soltwisch，V．，Hammerschmidt，M．，Burger， S．，and Rockstuhl，C．（2018）．

Benchmarking five global optimization approaches for nano-optical shape optimization and parameter reconstruction.

