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Motivating Application: Parameter Tuning of Accelerator

Maximize (photon) signal, minimize losses, . . .

[McIntire et al., 2016, Kirschner et al., 2019]
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Motivating Application: Experimental Design

Optimize design parameters, e.g. nano materials, molecules,...

[Schneider et al., 2018, Romero et al., 2013]
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Motivating Application: Fitting Physical Models

Optimize model parameters to fit observational data

[Ekström et al., 2019]
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Optimizing Black-Box Functions

Maximize a Black box function:

X −→ f  f (x) + ε

. Parameter space X ⊂ Rd , can also be combinatorial

. Little assumptions on f : non-convex, multiple local optima, ...

. No analytical formula for f

. No access to gradients

Only get (noisy) evaluations y = f (x) + ε

. Evaluations of f are ‘expensive’
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Bayesian Optimization: Overview

Prior data set: D0

For each step t = 1, 2, 3, . . . ,T ,

Step 1: Build probabilistic model f̂t of the objective using data Dt−1

. Gaussian process regression (Part I)

Step 2: Reduce model uncertainty about maximizers

. Search guided by acquisition function xt = arg max
x∈X

α(x |f̂t) (Part II)

Step 3: Observe (noisy) measurement yt = f (xt) + ε

. Augment data Dt = Dt−1 ∪ {(xt , yt)}

At final time T : Use model to find best predicted setting.
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Part I: Gaussian Process Regression
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Bayesian Statistics

Prior: Distribution P(f ) over f

. “prior belief”

Data likelihood: P(Dt |f )

. e.g. y ∼ f (x) +N (0, 1)

Posterior distribution: P(f |Dt) =
P(Dt |f )P(f )

P(Dt)
. Bayes’ theorem

. The posterior distribution captures our belief in f after seeing the data.
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Gaussian Processes

. Gaussian process (GP) = normal distribution over functions

. Finite marginals f (x1), . . . , f (xn) are multivariate Gaussians

. Parameterized by covariance function (kernel) k(x , x ′) = Cov(f (x), f (x ′))
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Gaussian Process on Finite Domain

Finite domain: X = {x1, . . . , xn}

Definition: f is a Gaussian process with mean µ(x) and kernel k(x , x ′)

. if f (x1), . . . , f (xn) is multivariate normal N (m,K ) with

. mean m = [µ(x1), . . . µ(xn)],

. covariance K = [k(xi , xj)]i ,j=1,...,n.

Denote f ∼ GP(m, k).
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Gaussian Process on Continuous Domain

Continuous domain: X ⊂ Rd

Definition: f is a Gaussian process with mean µ(x) and kernel k(x , x ′) if

. for any finite subset {x1, . . . , xn} ⊂ X ,

. f (x1), . . . , f (xn) is multivariate normal N (m,K ) with

. mean m = [µ(x1), . . . µ(xn)],

. covariance K = [k(xi , xj)]i ,j=1,...,n.

In practice we always evaluate/sample the GP on finite (grid) domains.
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Samples from a Gaussian Process
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Gaussian Process Regression

Prior: GP prior P(f ) = GP(µ, k) over f

. “prior belief” with prior mean µ and kernel k

Gaussian likelihood: iid Gaussian noise:

. P({y1, . . . , ym}|f (x1), . . . , f (xn)) =
∏

i N (f (xi), ρ
2)

. e.g. y ∼ f (x) +N (0, ρ2)

Posterior distribution: P(f |Dt) = GP(µn, kn)

. Posterior distributions is a again a GP!

. Closed form updates exist.

. Excellent book (free pdf): [Rasmussen, 2004, Chapter 2]
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Marginals

Posterior distribution: P(f |Dt) = GP(µn, kn)

. Remember: Finite marginals are Gaussians!

. Marginal posterior distribution at any point x is N (µn(x), kn(x , x))

Posterior variance σn(x)2 = kn(x , x) quantifies uncertainty
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Kernel Functions

Kernel k needs to satisfy some technical assumptions:

. symmetric

. positive semidefinite.

Kernels are similarity measures between points and encodes smoothness.
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Kernel Functions: Squared Exponential (RBF)

Squared exponential kernel: k(x , x ′) = exp(−‖x − x ′‖2/l2)

. l is called lengthscale (or bandwidth)
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Kernel Functions: Exponential

Exponential kernel: k(x , x ′) = exp(−‖x − x ′‖/l2)

. l is called lengthscale (or bandwidth)
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Kernel Functions: Matern

Matern32 kernel: k(x , x ′) =
(

1 +

√
3‖x − x‖

l

)
exp
(
−
√

3‖x − x ′‖
l

)
. l is called lengthscale (or bandwidth)

. Matern52, etc: Family of kernels with increasing smoothness
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Kernel Functions: Linear

Linear kernel: k(x , x ′) = x>x ′

. Recovers (Bayesian) linear regression!

Feature kernel: k(x , x ′) = Φ(x)>Φ(x ′)

. E.g. polynomials Φ(x) = [1, x , x2]
17



Kernel Parameters I

Noise variance

. Easy to measure

. Slightly larger value increases robustness

Kernel

. Smoothness of function

. RBF smooth functions

. Matern32, Matern52, less smooth, often work well in pratice

. Can also combine kernels, e.g. RBF + 5·Matern32

. Each kernel has its own hyper-parameters
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Kernel Parameters II

Normalizes domain (x-values)

Normalizes objective (y-values)

Prior variance

. Expected range of objective values

. Keep fixed (to 1) and normalize data

Lengthscale

. Smoothness of function

. If too large, might not model the objective well

. Can pick different lengthscales for different dimensions (ARD)

. Normalizes the domain

19
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How to choose parameters?

Try and error

. Parameters usually more intuitive to tune

Point estimates

. Maximum a posteriori estimation: θ∗ = arg maxθ P(Dt |θ)P(θ)

. Requires ‘representative’ initial data

. Might not work well with data collected while optimizing

Bayesian approach

. Define ‘reasonable’ prior distribution P(θ) over θ

. Marginalize predictions over posterior P(θ|Dt)

. More expensive to compute, no closed form

. Eliminates hyperparameters
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Notebook Session: GP Regression using GPy
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Part II: Bayesian Optimization
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Optimization - recap

. Assume function f (x) where x ∈ X .

. Noisy zero-order oracle ⇐⇒ y = f (x) + ε

. Grid approach fails:

. due to noise
Remedy: Probabilistic model: Gaussian Processes!

21



Optimization - recap

. Assume function f (x) where x ∈ X .

. Noisy zero-order oracle ⇐⇒ y = f (x) + ε

. Grid approach fails:

. due to noise
Remedy: Probabilistic model: Gaussian Processes!

21



Optimization - recap

. Assume function f (x) where x ∈ X .

. Noisy zero-order oracle ⇐⇒ y = f (x) + ε

. Grid approach fails:

. due to noise
Remedy: Probabilistic model: Gaussian Processes!

21



Optimization - recap

. Assume function f (x) where x ∈ X .

. Noisy zero-order oracle ⇐⇒ y = f (x) + ε

. Grid approach fails:

. due to noise

Remedy: Probabilistic model: Gaussian Processes!

21



Optimization - recap

. Assume function f (x) where x ∈ X .

. Noisy zero-order oracle ⇐⇒ y = f (x) + ε

. Grid approach fails:

. due to noise

Remedy: Probabilistic model: Gaussian Processes!

21



Optimization - recap

. Assume function f (x) where x ∈ X .

. Noisy zero-order oracle ⇐⇒ y = f (x) + ε

. Grid approach fails:

. due to noise

. due to efficiency [to come]

Remedy: Probabilistic model: Gaussian Processes!

21



Optimization - recap

. Assume function f (x) where x ∈ X .

. Noisy zero-order oracle ⇐⇒ y = f (x) + ε

. Grid approach fails:

. due to noise

. due to efficiency [to come]

Remedy: Probabilistic model: Gaussian Processes!

21



GPs: Avoid not necessary evaluations
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GPs: Avoid not necessary evaluations

Orange regions are already ruled out.
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Bayesian Optimization: Overview

Prior data set: D0

For each step t = 1, 2, 3, . . . ,T ,

Step 1: Build probabilistic model f̂t of the objective using data Dt−1

. Gaussian process regression (Part I)

Step 2: Reduce model uncertainty about maximizers

. Search guided by acquisition function xt = arg max
x∈X

α(x |f̂t) (Part II)

Step 3: Observe (noisy) measurement yt = f (xt) + ε

. Augment data Dt = Dt−1 ∪ {(xt , yt)}

At final time T : Use model to find best predicted setting.
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Upper Confidence Bound (UCB)

. µt . . . posterior mean after seeing t points

. σt . . . posterior standard deviation after seeing t points

. β ∈ R real parameter trading exploration and exploitation [see later]

αt(x) = µt(x) + βσt(x)

. How to optimize αt(x)?

. discretize search space X

. first-order heuristics

24
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UCB: Example
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Consequence of β

. What is β?

. β trades exploration and exploitation

. Theoretical value that ensure global convergence (right model assumption):

βt = 2 log(γt + 1)

where γt is maximum information gain, for RBF kernel γt = C log(T )d+1

. (Very common) heuristic approach: β ≈ 2.

. β too small =⇒ gets stuck/hill climbing

. β too high =⇒ incremental grid search
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Consequence of β II

. Hill Climbing - β small
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Other acquisition function

. Thompson sampling

. Sample a path s ∼ GP(µt , σt)

. Acquisition αt(x) = s(x)

. Empirically works often better

. Expected Improvement [Mockus, 1982]

. µt(x
+) is the best mean estimate

. αt(x) = E[max(0, f (x)− f (x+)|Dt ]

. Analytical solution: αt(x) = (µt(x)− µ(x+))Φ(Z ) + σ(x)φ(Z ) where,

Z = µt−µ(x+)
σt(x)

and Φ, φ are cdf and pdf of standard normal.
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Curse of dimensionality

. How do we apply this to multiple dimensions?

. Naturally, αt(x) can be defined in any X ⊂ Rd

. Practically, αt(x) cannot be optimized using a grid optimizer.

. The size of the grid grows nd and computational needs grow as (nd)3, where

n number of grid points in 1D.

. One can use a first-order heuristic to optimize the acquisition function locally.

. More advanced methods: Look [Mutný and Krause, 2018] or visit:

Talk of Johannes tomorrow on BO for SwissFEL.
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Part II, Programming: Lets try it out.
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