Tutorial on Bayesian Optimization

Johannes Kirschner and Mojmír Mutný

February 26th, 2019

ICFA ML Workshop, PSI

Motivating Application: Parameter Tuning of Accelerator

Maximize (photon) signal, minimize losses, ... [McIntire et al., 2016, Kirschner et al., 2019]

1

Motivating Application: Experimental Design

Optimize design parameters, e.g. nano materials, molecules,... [Schneider et al., 2018, Romero et al., 2013]

Motivating Application: Fitting Physical Models

Experimental data on NN scattering

Optimize model parameters to fit observational data [Ekström et al., 2019] Maximize a Black box function:

$$\mathcal{X} \longrightarrow f \rightsquigarrow f(x) + \epsilon$$

Maximize a Black box function:

$$\mathcal{X} \longrightarrow f \rightsquigarrow f(x) + \epsilon$$

- $\,\triangleright\,\,$ Parameter space $\mathcal{X} \subset \mathbb{R}^d$, can also be combinatorial
- \triangleright Little assumptions on f: non-convex, multiple local optima, ...
- \triangleright No analytical formula for f
- ▷ No access to gradients

Maximize a Black box function:

$$\mathcal{X} \longrightarrow f \rightsquigarrow f(x) + \epsilon$$

- $\,\triangleright\,\,$ Parameter space $\mathcal{X} \subset \mathbb{R}^d$, can also be combinatorial
- \triangleright Little assumptions on f: non-convex, multiple local optima, ...
- \triangleright No analytical formula for f
- ▷ No access to gradients

Only get (noisy) evaluations $y = f(x) + \epsilon$

 \triangleright Evaluations of *f* are 'expensive'

Prior data set: \mathcal{D}_0

Prior data set: \mathcal{D}_0 For each step $t = 1, 2, 3, \dots, T$,

Step 1: Build *probabilistic model* \hat{f}_t of the objective using data \mathcal{D}_{t-1} \triangleright Gaussian process regression (**Part I**)

Prior data set: \mathcal{D}_0 For each step $t = 1, 2, 3, \dots, T$,

Step 1: Build *probabilistic model* \hat{f}_t of the objective using data \mathcal{D}_{t-1} \triangleright Gaussian process regression (**Part I**)

Step 2: Reduce model *uncertainty about maximizers* \triangleright Search guided by acquisition function $x_t = \underset{x \in \mathcal{X}}{\arg \max \alpha(x|\hat{f}_t)}$ (Part II)

Prior data set: \mathcal{D}_0 For each step $t = 1, 2, 3, \dots, T$,

Step 1: Build *probabilistic model* \hat{f}_t of the objective using data \mathcal{D}_{t-1} \triangleright Gaussian process regression (**Part I**)

Step 2: Reduce model *uncertainty about maximizers* \triangleright Search guided by acquisition function $x_t = \arg \max_{x \in \mathcal{X}} \alpha(x|\hat{f}_t)$ (Part II)

Step 3: Observe (noisy) measurement $y_t = f(x_t) + \epsilon$ \triangleright Augment data $\mathcal{D}_t = \mathcal{D}_{t-1} \cup \{(x_t, y_t)\}$

Prior data set: \mathcal{D}_0 For each step $t = 1, 2, 3, \dots, T$,

Step 1: Build *probabilistic model* \hat{f}_t of the objective using data \mathcal{D}_{t-1} \triangleright Gaussian process regression (**Part I**)

Step 2: Reduce model *uncertainty about maximizers* \triangleright Search guided by acquisition function $x_t = \underset{x \in \mathcal{X}}{\arg \max \alpha(x|\hat{f}_t)}$ (Part II)

Step 3: Observe (noisy) measurement $y_t = f(x_t) + \epsilon$ \triangleright Augment data $\mathcal{D}_t = \mathcal{D}_{t-1} \cup \{(x_t, y_t)\}$

At final time T: Use model to find best predicted setting.

Part I: Gaussian Process Regression

Prior: Distribution $\mathcal{P}(f)$ over f

▷ "prior belief"

Prior: Distribution $\mathcal{P}(f)$ over f "prior belief"

Data likelihood: $\mathcal{P}(D_t|f)$ \triangleright e.g. $y \sim f(x) + \mathcal{N}(0, 1)$

Prior: Distribution $\mathcal{P}(f)$ over f \triangleright "prior belief"

Data likelihood: $\mathcal{P}(D_t|f)$ \triangleright e.g. $y \sim f(x) + \mathcal{N}(0, 1)$

Posterior distribution:
$$\mathcal{P}(f|D_t) = rac{\mathcal{P}(D_t|f)\mathcal{P}(f)}{\mathcal{P}(D_t)}$$

- ▷ Bayes' theorem
- \triangleright The posterior distribution captures our belief in *f* after seeing the data.

Gaussian Processes

▷ **Gaussian process (GP)** = normal distribution over *functions*

Gaussian Processes

- ▷ Gaussian process (GP) = normal distribution over functions
- \triangleright Finite marginals $f(x_1), \ldots, f(x_n)$ are multivariate Gaussians

Gaussian Processes

- ▷ Gaussian process (GP) = normal distribution over functions
- \triangleright Finite marginals $f(x_1), \ldots, f(x_n)$ are multivariate Gaussians
- \triangleright Parameterized by covariance function (kernel) k(x, x') = Cov(f(x), f(x'))

Definition: f is a Gaussian process with mean $\mu(x)$ and kernel k(x, x') \triangleright if $f(x_1), \ldots, f(x_n)$ is multivariate normal $\mathcal{N}(m, K)$ with

Definition: f is a Gaussian process with mean $\mu(x)$ and kernel k(x, x') \triangleright if $f(x_1), \ldots, f(x_n)$ is multivariate normal $\mathcal{N}(m, K)$ with \triangleright mean $m = [\mu(x_1), \ldots, \mu(x_n)]$,

Definition: f is a Gaussian process with mean $\mu(x)$ and kernel k(x, x') \triangleright if $f(x_1), \ldots, f(x_n)$ is multivariate normal $\mathcal{N}(m, K)$ with \triangleright mean $m = [\mu(x_1), \ldots, \mu(x_n)],$ \triangleright covariance $K = [k(x_i, x_i)]_{i,i=1,\ldots,n}$.

Definition: f is a Gaussian process with mean $\mu(x)$ and kernel k(x, x') \triangleright if $f(x_1), \ldots, f(x_n)$ is multivariate normal $\mathcal{N}(m, K)$ with \triangleright mean $m = [\mu(x_1), \ldots, \mu(x_n)],$ \triangleright covariance $K = [k(x_i, x_j)]_{i,j=1,\ldots,n}.$

Denote $f \sim GP(m, k)$.

Definition: f is a Gaussian process with mean $\mu(x)$ and kernel k(x, x') if \triangleright for any finite subset $\{x_1, \ldots, x_n\} \subset \mathcal{X}$,

Definition: f is a Gaussian process with mean $\mu(x)$ and kernel k(x, x') if

- \triangleright for any finite subset $\{x_1, \ldots, x_n\} \subset \mathcal{X}$,
- $\triangleright f(x_1), \ldots, f(x_n)$ is multivariate normal $\mathcal{N}(m, K)$ with
- \triangleright mean $m = [\mu(x_1), \dots, \mu(x_n)],$
- ▷ covariance $K = [k(x_i, x_j)]_{i,j=1,...,n}$.

Definition: f is a Gaussian process with mean $\mu(x)$ and kernel k(x, x') if

- \triangleright for any finite subset $\{x_1, \ldots, x_n\} \subset \mathcal{X}$,
- $\triangleright f(x_1), \ldots, f(x_n)$ is multivariate normal $\mathcal{N}(m, K)$ with
- \triangleright mean $m = [\mu(x_1), \dots, \mu(x_n)],$
- \triangleright covariance $K = [k(x_i, x_j)]_{i,j=1,...,n}$.

In practice we always evaluate/sample the GP on finite (grid) domains.

Samples from a Gaussian Process

Samples from a Gaussian Process

Samples from a Gaussian Process

Gaussian Process Regression

Prior: GP prior $\mathcal{P}(f) = GP(\mu, k)$ over f \triangleright "prior belief" with prior mean μ and kernel k **Prior:** GP prior $\mathcal{P}(f) = GP(\mu, k)$ over f \triangleright "prior belief" with prior mean μ and kernel k

Gaussian likelihood: iid Gaussian noise:

$$P(\{y_1,\ldots,y_m\}|f(x_1),\ldots,f(x_n)) = \prod_i \mathcal{N}(f(x_i),\rho^2)$$

$$e.g. \ y \sim f(x) + \mathcal{N}(0,\rho^2)$$

Prior: GP prior $\mathcal{P}(f) = GP(\mu, k)$ over f \triangleright "prior belief" with prior mean μ and kernel k

Gaussian likelihood: iid Gaussian noise:

$$P(\{y_1,\ldots,y_m\}|f(x_1),\ldots,f(x_n)) = \prod_i \mathcal{N}(f(x_i),\rho^2)$$

e.g. $y \sim f(x) + \mathcal{N}(0,\rho^2)$

Posterior distribution: $\mathcal{P}(f|D_t) = GP(\mu_n, k_n)$

- ▷ Posterior distributions is a again a GP!
- ▷ Closed form updates exist.
- ▷ Excellent book (free pdf): [Rasmussen, 2004, Chapter 2]

Marginals

Posterior distribution: $\mathcal{P}(f|D_t) = GP(\mu_n, k_n)$

- Remember: Finite marginals are Gaussians!
- \triangleright Marginal posterior distribution at any point x is $\mathcal{N}(\mu_n(x), k_n(x, x))$

Marginals

Posterior distribution: $\mathcal{P}(f|D_t) = GP(\mu_n, k_n)$

- Remember: Finite marginals are Gaussians!
- \triangleright Marginal posterior distribution at any point x is $\mathcal{N}(\mu_n(x), k_n(x, x))$

Posterior variance $\sigma_n(x)^2 = k_n(x,x)$ quantifies uncertainty

Kernel k needs to satisfy some technical assumptions:

- ▷ symmetric
- \triangleright positive semidefinite.

Kernel k needs to satisfy some technical assumptions:

- ▷ symmetric
- ▷ positive semidefinite.

Kernels are similarity measures between points and encodes smoothness.

Kernel Functions: Squared Exponential (RBF)

Squared exponential kernel: $k(x, x') = \exp(-||x - x'||^2/l^2)$ \triangleright *l* is called lengthscale (or bandwidth)

Kernel Functions: Exponential

Exponential kernel: $k(x, x') = \exp(-||x - x'||/l^2)$

▷ *I* is called lengthscale (or bandwidth)

Kernel Functions: Matern

Matern32 kernel: $k(x, x') = \left(1 + \frac{\sqrt{3}\|x - x\|}{I}\right) \exp\left(-\frac{\sqrt{3}\|x - x'\|}{I}\right)$ \triangleright *I* is called lengthscale (or bandwidth)

▷ Matern52, etc: Family of kernels with increasing smoothness

Kernel Functions: Linear

Linear kernel: $k(x, x') = x^{\top}x'$ \triangleright Recovers (Bayesian) linear regression! **Feature kernel:** $k(x, x') = \Phi(x)^{\top}\Phi(x')$ \triangleright E.g. polynomials $\Phi(x) = [1, x, x^2]$

Noise variance

- ▷ Easy to measure
- Slightly larger value increases robustness

Noise variance

- ▷ Easy to measure
- Slightly larger value increases robustness

Kernel

- \triangleright Smoothness of function
- \triangleright RBF smooth functions
- ▷ Matern32, Matern52, less smooth, often work well in pratice
- $\triangleright~$ Can also combine kernels, e.g. RBF + 5·Matern32
- ▷ Each kernel has its own hyper-parameters

Kernel Parameters II

Normalizes objective (y-values)

Prior variance

- Expected range of objective values
- \triangleright Keep fixed (to 1) and normalize data

Prior variance

- ▷ Expected range of objective values
- $\triangleright~$ Keep fixed (to 1) and normalize data

Lengthscale

- Smoothness of function
- > If too large, might not model the objective well
- ▷ Can pick different lengthscales for different dimensions (ARD)
- ▷ Normalizes the domain

Normalizes objective (y-values)

How to choose parameters?

Try and error

▷ Parameters usually more intuitive to tune

How to choose parameters?

Try and error

Parameters usually more intuitive to tune

Point estimates

- \triangleright Maximum a posteriori estimation: $\theta^* = \arg \max_{\theta} \mathcal{P}(D_t|\theta) \mathcal{P}(\theta)$
- Requires 'representative' initial data
- > Might not work well with data collected while optimizing

How to choose parameters?

Try and error

Parameters usually more intuitive to tune

Point estimates

- \triangleright Maximum a posteriori estimation: $\theta^* = \arg \max_{\theta} \mathcal{P}(D_t|\theta) \mathcal{P}(\theta)$
- Requires 'representative' initial data
- > Might not work well with data collected while optimizing

Bayesian approach

- \triangleright Define 'reasonable' prior distribution $\mathcal{P}(\theta)$ over θ
- \triangleright Marginalize predictions over posterior $\mathcal{P}(\theta|D_t)$
- $\,\triangleright\,\,$ More expensive to compute, no closed form
- Eliminates hyperparameters

Notebook Session: GP Regression using GPy

Part II: Bayesian Optimization

▷ Assume function f(x) where $x \in \mathcal{X}$.

- ▷ Assume function f(x) where $x \in \mathcal{X}$.
- \triangleright Noisy zero-order oracle $\iff y = f(x) + \epsilon$

- ▷ Assume function f(x) where $x \in \mathcal{X}$.
- \triangleright Noisy zero-order oracle $\iff y = f(x) + \epsilon$
- ▷ Grid approach fails:

- ▷ Assume function f(x) where $x \in \mathcal{X}$.
- \triangleright Noisy zero-order oracle $\iff y = f(x) + \epsilon$
- ▷ Grid approach fails:

 \triangleright due to noise

- ▷ Assume function f(x) where $x \in \mathcal{X}$.
- \triangleright Noisy zero-order oracle $\iff y = f(x) + \epsilon$
- ▷ Grid approach fails:

 \triangleright due to noise

- ▷ Assume function f(x) where $x \in \mathcal{X}$.
- \triangleright Noisy zero-order oracle $\iff y = f(x) + \epsilon$
- ▷ Grid approach fails:

 \triangleright due to noise

▷ due to efficiency [to come]

- ▷ Assume function f(x) where $x \in \mathcal{X}$.
- \triangleright Noisy zero-order oracle $\iff y = f(x) + \epsilon$
- ▷ Grid approach fails:

 \triangleright due to noise

▷ due to efficiency [to come]

Prior data set: \mathcal{D}_0

Prior data set: \mathcal{D}_0 For each step $t = 1, 2, 3, \dots, T$,

Step 1: Build *probabilistic model* \hat{f}_t of the objective using data \mathcal{D}_{t-1} \triangleright Gaussian process regression (**Part I**)

Prior data set: \mathcal{D}_0 For each step $t = 1, 2, 3, \dots, T$,

Step 1: Build *probabilistic model* \hat{f}_t of the objective using data \mathcal{D}_{t-1} \triangleright Gaussian process regression (**Part I**)

Step 2: Reduce model *uncertainty about maximizers* \triangleright Search guided by acquisition function $x_t = \underset{x \in \mathcal{X}}{\arg \max \alpha(x|\hat{f}_t)}$ (Part II)

Prior data set: \mathcal{D}_0 For each step $t = 1, 2, 3, \dots, T$,

Step 1: Build *probabilistic model* \hat{f}_t of the objective using data \mathcal{D}_{t-1} \triangleright Gaussian process regression (**Part I**)

Step 2: Reduce model *uncertainty about maximizers* \triangleright Search guided by acquisition function $x_t = \underset{x \in \mathcal{X}}{\arg \max \alpha(x|\hat{f}_t)}$ (Part II)

Step 3: Observe (noisy) measurement $y_t = f(x_t) + \epsilon$ \triangleright Augment data $\mathcal{D}_t = \mathcal{D}_{t-1} \cup \{(x_t, y_t)\}$

Prior data set: \mathcal{D}_0 For each step $t = 1, 2, 3, \dots, T$,

Step 1: Build *probabilistic model* \hat{f}_t of the objective using data \mathcal{D}_{t-1} \triangleright Gaussian process regression (**Part I**)

Step 2: Reduce model *uncertainty about maximizers* \triangleright Search guided by acquisition function $x_t = \underset{x \in \mathcal{X}}{\arg \max \alpha(x|\hat{f}_t)}$ (Part II)

Step 3: Observe (noisy) measurement $y_t = f(x_t) + \epsilon$ \triangleright Augment data $\mathcal{D}_t = \mathcal{D}_{t-1} \cup \{(x_t, y_t)\}$

At final time T: Use model to find best predicted setting.

 $\triangleright \quad \mu_t \dots \text{ posterior mean after seeing } t \text{ points}$

- $\triangleright \quad \mu_t \dots \text{ posterior mean after seeing } t \text{ points}$
- $\triangleright \sigma_t \dots$ posterior standard deviation after seeing t points

- $\triangleright \quad \mu_t \dots \text{ posterior mean after seeing } t \text{ points}$
- $\triangleright \sigma_t \dots$ posterior standard deviation after seeing t points
- $\triangleright \quad \beta \in \mathbb{R}$ real parameter trading *exploration and exploitation* [see later]

- $\triangleright \quad \mu_t \dots \text{ posterior mean after seeing } t \text{ points}$
- $\triangleright \sigma_t \dots$ posterior standard deviation after seeing t points
- $\triangleright \quad \beta \in \mathbb{R}$ real parameter trading *exploration and exploitation* [see later]

$$\alpha_t(\mathbf{x}) = \mu_t(\mathbf{x}) + \beta \sigma_t(\mathbf{x})$$

- ▷ How to optimize $\alpha_t(x)$?
 - $\triangleright \quad \text{discretize search space } \mathcal{X}$

Upper Confidence Bound (UCB)

- $\triangleright \quad \mu_t \dots \text{ posterior mean after seeing } t \text{ points}$
- $\triangleright \sigma_t \dots$ posterior standard deviation after seeing t points
- $\triangleright \quad \beta \in \mathbb{R}$ real parameter trading *exploration and exploitation* [see later]

$$\alpha_t(\mathbf{x}) = \mu_t(\mathbf{x}) + \beta \sigma_t(\mathbf{x})$$

- ▷ How to optimize $\alpha_t(x)$?
 - $\triangleright \quad \text{discretize search space } \mathcal{X}$
 - b first-order heuristics

Upper Confidence Bound (UCB)

- $\triangleright \quad \mu_t \dots \text{ posterior mean after seeing } t \text{ points}$
- $\triangleright \sigma_t \dots$ posterior standard deviation after seeing t points
- $\triangleright \quad \beta \in \mathbb{R}$ real parameter trading *exploration and exploitation* [see later]

$$\alpha_t(\mathbf{x}) = \mu_t(\mathbf{x}) + \beta \sigma_t(\mathbf{x})$$

- ▷ How to optimize $\alpha_t(x)$?
 - \triangleright discretize search space ${\mathcal X}$
 - b first-order heuristics

 \triangleright What is β ?

- \triangleright What is β ?
- $\triangleright \quad \beta \mbox{ trades exploration and exploitation}$

- \triangleright What is β ?
- $\triangleright \quad \beta$ trades exploration and exploitation
- ▷ Theoretical value that ensure global convergence (right model assumption):

 $\beta_t = 2\log(\gamma_t + 1)$

- \triangleright What is β ?
- $\triangleright \ \beta$ trades exploration and exploitation
- ▷ Theoretical value that ensure global convergence (right model assumption):

$$\beta_t = 2\log(\gamma_t + 1)$$

where γ_t is maximum information gain, for RBF kernel $\gamma_t = C \log(T)^{d+1}$

- \triangleright What is β ?
- $\triangleright \quad \beta$ trades exploration and exploitation
- ▷ Theoretical value that ensure global convergence (right model assumption):

$$\beta_t = 2\log(\gamma_t + 1)$$

where γ_t is maximum information gain, for RBF kernel $\gamma_t = C \log(T)^{d+1}$ \triangleright (Very common) *heuristic* approach: $\beta \approx 2$.

- \triangleright What is β ?
- $\triangleright \ \beta$ trades exploration and exploitation
- ▷ Theoretical value that ensure global convergence (right model assumption):

$$\beta_t = 2\log(\gamma_t + 1)$$

where γ_t is maximum information gain, for RBF kernel $\gamma_t = C \log(T)^{d+1}$

- ▷ (Very common) *heuristic* approach: $\beta \approx 2$.
- $\triangleright \ \ \beta \text{ too small } \Longrightarrow \ \ \mathsf{gets } \mathsf{stuck/hill } \mathsf{climbing}$

- \triangleright What is β ?
- $\triangleright \ \beta$ trades exploration and exploitation
- ▷ Theoretical value that ensure global convergence (right model assumption):

$$\beta_t = 2\log(\gamma_t + 1)$$

where γ_t is maximum information gain, for RBF kernel $\gamma_t = C \log(T)^{d+1}$

- ▷ (Very common) *heuristic* approach: $\beta \approx 2$.
- $\triangleright \ \ \beta \text{ too small } \Longrightarrow \ \ \mathsf{gets } \mathsf{stuck/hill } \mathsf{climbing}$
- $\triangleright \ \ \beta \ \ {\rm too} \ \ {\rm high} \ \ \Longrightarrow \ \ {\rm incremental \ grid \ search}$

 \triangleright Hill Climbing - β small

Hill Climbing - β small \triangleright

Bayesian Optimization Example

Sequential Grid - β large \triangleright

 \triangleright Hill Climbing - β small

 \triangleright Hill Climbing - β small

 \triangleright Hill Climbing - β small

 \triangleright Hill Climbing - β small

 \triangleright Hill Climbing - β small

Other acquisition function

▷ Thompson sampling

- ▷ Thompson sampling
 - \triangleright Sample a path $s \sim {\sf GP}(\mu_t, \sigma_t)$

- \triangleright Sample a path $s \sim {\sf GP}(\mu_t, \sigma_t)$
- $\triangleright \quad \text{Acquisition } \alpha_t(x) = s(x)$

- \triangleright Sample a path $s \sim \mathsf{GP}(\mu_t, \sigma_t)$
- $\triangleright \quad \text{Acquisition } \alpha_t(x) = s(x)$
- Empirically works often better

- \triangleright Sample a path $s \sim \mathsf{GP}(\mu_t, \sigma_t)$
- ▷ Acquisition $\alpha_t(x) = s(x)$
- Empirically works often better
- Expected Improvement [Mockus, 1982]

- \triangleright Sample a path $s \sim \mathsf{GP}(\mu_t, \sigma_t)$
- $\triangleright \quad \text{Acquisition } \alpha_t(x) = s(x)$
- Empirically works often better
- Expected Improvement [Mockus, 1982]
 - $\triangleright \quad \mu_t(x^+)$ is the best mean estimate

- \triangleright Sample a path $s \sim {\sf GP}(\mu_t, \sigma_t)$
- $\triangleright \quad \text{Acquisition } \alpha_t(x) = s(x)$
- Empirically works often better
- Expected Improvement [Mockus, 1982]
 - $\triangleright \quad \mu_t(x^+)$ is the best mean estimate
 - $\triangleright \quad \alpha_t(x) = \mathbb{E}[\max(0, f(x) f(x^+) | \mathcal{D}_t]]$

- \triangleright Sample a path $s \sim {\sf GP}(\mu_t, \sigma_t)$
- ▷ Acquisition $\alpha_t(x) = s(x)$
- Empirically works often better
- Expected Improvement [Mockus, 1982]
 - $\triangleright \quad \mu_t(x^+)$ is the best mean estimate
 - $\triangleright \quad \alpha_t(x) = \mathbb{E}[\max(0, f(x) f(x^+) | \mathcal{D}_t]]$
 - ▷ Analytical solution: $\alpha_t(x) = (\mu_t(x) \mu(x^+))\Phi(Z) + \sigma(x)\phi(Z)$ where, $Z = \frac{\mu_t - \mu(x^+)}{\sigma_t(x)}$ and Φ, ϕ are cdf and pdf of standard normal.

- \triangleright Sample a path $s \sim {\sf GP}(\mu_t, \sigma_t)$
- ▷ Acquisition $\alpha_t(x) = s(x)$
- Empirically works often better
- Expected Improvement [Mockus, 1982]
 - $\triangleright \quad \mu_t(x^+)$ is the best mean estimate
 - $\triangleright \quad \alpha_t(x) = \mathbb{E}[\max(0, f(x) f(x^+) | \mathcal{D}_t]]$
 - ▷ Analytical solution: $\alpha_t(x) = (\mu_t(x) \mu(x^+))\Phi(Z) + \sigma(x)\phi(Z)$ where, $Z = \frac{\mu_t - \mu(x^+)}{\sigma_t(x)}$ and Φ, ϕ are cdf and pdf of standard normal.

\triangleright How do we apply this to multiple dimensions?

- \triangleright How do we apply this to multiple dimensions?
- \triangleright Naturally, $lpha_t(x)$ can be defined in any $\mathcal{X} \subset \mathbb{R}^d$

- \triangleright How do we apply this to multiple dimensions?
- \triangleright Naturally, $lpha_t(x)$ can be defined in any $\mathcal{X} \subset \mathbb{R}^d$
- \triangleright Practically, $\alpha_t(x)$ cannot be optimized using a grid optimizer.

- \triangleright How do we apply this to multiple dimensions?
- \triangleright Naturally, $lpha_t(x)$ can be defined in any $\mathcal{X} \subset \mathbb{R}^d$
- \triangleright Practically, $\alpha_t(x)$ cannot be optimized using a grid optimizer.
- \triangleright The size of the grid grows n^d and computational needs grow as $(n^d)^3$, where *n* number of grid points in 1D.

- $\,\triangleright\,\,$ How do we apply this to multiple dimensions?
- \triangleright Naturally, $lpha_t(x)$ can be defined in any $\mathcal{X} \subset \mathbb{R}^d$
- \triangleright Practically, $\alpha_t(x)$ cannot be optimized using a grid optimizer.
- \triangleright The size of the grid grows n^d and computational needs grow as $(n^d)^3$, where n number of grid points in 1D.
- > One can use a first-order heuristic to optimize the acquisition function locally.

- $\,\triangleright\,\,$ How do we apply this to multiple dimensions?
- \triangleright Naturally, $lpha_t(x)$ can be defined in any $\mathcal{X} \subset \mathbb{R}^d$
- \triangleright Practically, $\alpha_t(x)$ cannot be optimized using a grid optimizer.
- \triangleright The size of the grid grows n^d and computational needs grow as $(n^d)^3$, where n number of grid points in 1D.
- > One can use a first-order heuristic to optimize the acquisition function locally.
- ▷ More advanced methods: Look [Mutný and Krause, 2018] or visit:

Talk of Johannes tomorrow on BO for SwissFEL.

- $\,\triangleright\,\,$ How do we apply this to multiple dimensions?
- \triangleright Naturally, $lpha_t(x)$ can be defined in any $\mathcal{X} \subset \mathbb{R}^d$
- \triangleright Practically, $\alpha_t(x)$ cannot be optimized using a grid optimizer.
- \triangleright The size of the grid grows n^d and computational needs grow as $(n^d)^3$, where n number of grid points in 1D.
- > One can use a first-order heuristic to optimize the acquisition function locally.
- ▷ More advanced methods: Look [Mutný and Krause, 2018] or visit:

Talk of Johannes tomorrow on BO for SwissFEL.

Part II, Programming: Lets try it out.

- Ekström, A., Forssén, C., Dimitrakakis, C., Dubhashi, D., Johansson, H., Muhammad, A., Salomonsson, H., and Schliep, A. (2019).
 Bayesian optimization in ab initio nuclear physics. arXiv preprint arXiv:1902.00941.
- Kirschner, J., Mutný, M., Hiller, N., Ischebeck, R., and Krause, A. (2019).
 Adaptive and safe bayesian optimization in high dimensions via one-dimensional subspaces.
- McIntire, M., Cope, T., Ratner, D., and Ermon, S. (2016).
 Bayesian optimization of fel performance at Icls.
 Proceedings of IPAC2016.
- Mockus, J. (1982).

The bayesian approach to global optimization. *System Modeling and Optimization*, pages 473–481. Mutný, M. and Krause, A. (2018).

Efficient high dimensional bayesian optimization with additivity and quadrature fourier features.

In Neural and Information Processing Systems (NeurIPS).

Rasmussen, C. E. (2004).

Gaussian processes in machine learning.

In Advanced lectures on machine learning, pages 63-71. Springer.

- Romero, P. A., Krause, A., and Arnold, F. H. (2013).
 Navigating the protein fitness landscape with gaussian processes.
 Proceedings of the National Academy of Sciences (PNAS), 110(3).
- Schneider, P.-I., Santiago, X. G., Soltwisch, V., Hammerschmidt, M., Burger, S., and Rockstuhl, C. (2018).

Benchmarking five global optimization approaches for nano-optical shape optimization and parameter reconstruction.