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Micro-Bunching Instability
Micro-Bunching and CSR Power Fluctuations
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micro-structure dynamics

⇒ continuous variation of charge distribution leads to fluctuating CSR
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Micro-Bunching Instability
CSR self-interaction
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Micro-Bunching Instability
CSR Power Spectrogram: Dependency on Bunch Current
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Simulation code: Parallelized VFP solver Inovesa (https://github.com/Inovesa/Inovesa)
Schönfeldt, P. et al., Phys. Rev. Accel. Beams 20 (2017)
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Reinforcement Learning
. . . in a Nutshell: Learning from Interaction

goal-directed learning from interaction (trial-and-error search)

mathematical foundation: Markov decision process (MDP)

“The future is independent of the past given the present.”

start

goal

environment

agent

action

state, reward

∆t

policy: defines agent’s behavior

goal: maximize cumulative
reward
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Reinforcement Learning
. . . in a Nutshell: Finding better Policies

value function qπ is the expected cumulative reward following policy π
general policy iteration (GPI)

policy evaluation: learning the value function
policy improvement: exploiting the gained knowledge

π Q

evaluation

Q  qπ

improvement

π  greedy(Q)

q, π
q∗, π∗

q = qπ

π = greedy(q)
π∗ q∗

Figure: adapted from Reinforcement Learning, Sutton, R.S. and Barto, A.G., 2nd edition, MIT Press (November 2018)
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Reinforcement Learning
. . . in a Nutshell: Actor-Critic System using NNs
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critic
network

evaluation and update based on
estimation of expected

reward q̂(s, a)

chosen action
to be evaluated

state s = (s1, s2, s3, s4)T

action a = (a1, a2, a3)T

e.g. DDPG algorithm*
(Deep Deterministic Policy Gradient)

*Continuous control with deep reinforcement learning, Lillicrap, T.P. et al. (2015), https://arxiv.org/abs/1509.02971
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RL based Control of Micro-Bunching
Definition of Partially Observable MDP

goal: control micro-bunching
(longitudinal beam dynamics)
to optimize emitted CSR

proof of principle:
control in simulation (Inovesa)

implementation:
THz diagnostics (KAPTURE) and RF system at KARA

CSR Signal

Agent

RF System
reward state

action
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RL based Control of Micro-Bunching
Observation, Reward and Action

observation: hidden state of electron bunch
o = (µ, σ, t, fmax,Afmax)

T ⇒ full CSR signal or even phase space?

reward function: optimization of emitted CSR signal
R = αµ− βσ with α, β > 0 ⇒ best ratio α/β?

action: modifications to the RF system

1) scale RF amplitude and phase:
a = (VRF, ψRF)

T

2) restrict to modulations of VRF and ψRF:
a = (AV , fV ,Aψ, fψ)T
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RL based Control of Micro-Bunching
First Results using the DDPG Algorithm
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Summary and Outlook
Open Questions

early results indicate stationary optimization might be sufficient,
i.e. finding and repeating the best action (multi-armed bandit problem)

however, . . .

action is expected to depend on the state (CSR self-interaction)

different bunch currents, machine settings and reward functions need
to be explored⇒ is control possible with a singular agent?

what happens in a noisy environment, i.e. the real accelerator?

definition of observation / state (retaining the Markov property)

choice of action space⇒ what influences the micro-bunching?

transferability to different control tasks / instabilities?
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Thank you for
your attention!
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Backup
Markov Property and Phase Space

Markov property in Inovesa:
configuration parameters
and initial phase space
density determine
results (true state)

not just a feature
of VFP solvers, but
something that’s rooted
in the definition of
phase spaces
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Backup
Effects of RF Amplitude Modulation (AV = 0.2 V0, fV = 4.78 fs)
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Backup
Effects of RF Amplitude Modulation (AV = 0.2 V0, fV = 5 fs)
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