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Micro-Bunching Instability A\K“

Micro-Bunching and CSR Power Fluctuations
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= continuous variation of charge distribution leads to fluctuating CSR
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Micro-Bunching Instability

CSR self-interaction
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Micro-Bunching Instability ﬂ(“

CSR Power Spectrogram: Dependency on Bunch Current
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Simulation code: Parallelized VFP solver Inovesa (https://github.com/Inovesa/Inovesa)
Schonfeldt, P. et al., Phys. Rev. Accel. Beams 20 (2017)
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https://github.com/Inovesa/Inovesa

Reinforcement Learning A\K"‘

..in a Nutshell: Learning from Interaction

a goal-directed learning from interaction (trial-and-error search)
a mathematical foundation: Markov decision process (MDP)
“The future is independent of the past given the present.”

policy: defines agent’s behavior state, reward
goal: maximize cumulative environment
reward
start
EL N
goal
agent @
actlon
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Reinforcement Learning ﬂ(“

...in a Nutshell: Finding better Policies
a value function g, is the expected cumulative reward following policy
m general policy iteration (GPI)

a policy evaluation: learning the value function
a policy improvement: exploiting the gained knowledge

evaluation

™ Q

™ ~ greedy(Q)

_—

improvement
Figure: adapted from Reinforcement Learning, Sutton, R.S. and Barto, A.G., 2nd edition, MIT Press (November 2018)
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Reinforcement Learning AT
...in a Nutshell: Actor-Critic System using NNs

evaluation and update based on
estimation of expected
reward g(s, a)

actor
network chosen action
to be evaluated

=Y

.4’ 67(3, a)

>

state s = (s1, S2, 83, 54)"
action a = (ar, a, as)"
N critic
e.g. DDPG algorithm network
(Deep Deterministic Policy Gradient)
*Continuous control with deep reinforcement learning, Lillicrap, T.P. et al. (2015), https://arxiv.org/abs/1509.02971
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RL based Control of Micro-Bunching
Definition of Partially Observable MDP

CSR Signal

goal: control micro-bunching
(longitudinal beam dynamics)
to optimize emitted CSR

reward state

proof of principle:
control in simulation (Inovesa)

action

implementation:
THz diagnostics (KAPTURE) and RF system at KARA

Tobias Boltz — RL based Control of Micro-Bunching | LAS, KIT February 27, 2019 8/12



RL based Control of Micro-Bunching
Observation, Reward and Action

m observation: hidden state of electron bunch

0 = (i1, 0, t, Fnax, Amax) " = full CSR signal or even phase space?

a reward function: optimization of emitted CSR signal
R=au—pfo with «,5>0 = bestratioa/5?

a action: modifications to the RF system

1) scale RF amplitude and phase:
a = (Var, Urr)"

2) restrict to modulations of Vg and 1rg: ] Lo\ ]
a:(A\/,fv,Aw,fw)T L NG

| | | | |

420 2 4
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RL based Control of Micro-Bunching

Observation, Reward and Action

m observation: hidden state of electron bunch

0 = (u,0,t, fmax, Afmax)T = full CSR signal or even phase space?

a reward function: optimization of emitted CSR signal
R=au—pfo with «,5>0 = bestratioa/5?

a action: modifications to the RF system
1) scale RF amplitude and phase:
a = (Var, Yre)"
2) restrict to modulations of Vg and 1rg:
a—= (A\/7 fv, Aw, fw)T
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RL based Control of Micro-Bunching

Observation, Reward and Action

m observation: hidden state of electron bunch
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RL based Control of Micro-Bunching AT
First Results using the DDPG Algorithm
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RL based Control of Micro-Bunching AT
First Results using the DDPG Algorithm
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RL based Control of Micro-Bunching AT
First Results using the DDPG Algorithm
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Summary and Outlook ﬂ(“

Open Questions
m early results indicate stationary optimization might be sufficient,
i.e. finding and repeating the best action (multi-armed bandit problem)
however, ...

m action is expected to depend on the state (CSR self-interaction)

m different bunch currents, machine settings and reward functions need
to be explored = is control possible with a singular agent?

what happens in a noisy environment, i.e. the real accelerator?

definition of observation / state (retaining the Markov property)

choice of action space = what influences the micro-bunching?

transferability to different control tasks / instabilities?
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Thank you for
your attention!
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Backup KIT
Markov Property and Phase Space

. phase space density
a Markov property in Inovesa:
configuration parameters 12.0
and initial phase space
density determine 2
8.0
a not just a feature 4.0
0.0
-2 0 2

results (true state)

energy (0g )
o
p (PC/(0200E0))

of VFP solvers, but 2
something that’s rooted
in the definition of
phase spaces

long. position (o,0)
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Backup

Effects of RF Amplitude Modulation (Ay = 0.2 Vo, fy = 4.78 )

Karlsruhe Intitute of Technology
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Backup AT
Effects of RF Amplitude Modulation (Ay = 0.2 Vo, fy = 5£) N
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