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Introduction



LEIR/SPS in the CERN complex
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Operating accelerators = correcting parameters

Observable, model and correctors....

- Well established CERN approach from LHC,
SPS,.. - work with higher level parameters and
deterministic algorithms, models ,
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But...

Some of the accelerators and beam characteristics difficult to model

Examples:

» Space charge dominated beam dynamics in LINACs
« E-cooling setting-up

* Transmission optimization during transition crossing

 Alignment of collimators, electrostatic septa with many degrees of
freedom

What can be done to avoid manual scans and trial-and-error?
* Develop online models as much as possible
* Advanced optimization algorithms and reinforcement learning
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Basic terminology of RL

I Upd li
An experiment - How to teach my cat pdate policy (p)
the command “sit"?

Take action (A)
State () based on policy (p) Reward (R)

H - A — h_, The cat is the agent.

The Reward Hypothesis: Goals and purposes =

maximization of expected value of the cumulative sum of
a received scalar signal - the reward.
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RL - mathematical formalism

 Markov decision process (MDP) of the first order:
Current state s completely characterizes the state of the world.

The world is defined by (&, &, £, &, y), which denotes the
state-, action-, reward-spaces and the transition probabilities P,

R is the current reward and y the discount factor.

* QObjective: Find the policy, which maximizes the (expected)
cumulative discounted reward for a given state:
umulativ g G, = Z y! R,

>0

y € [0,1]

action
A,




Important terms

The (stochastic) policy 7 : What is the strategy to take actions?

m(als) =P[A, =alS§, = s]

The q function (for a given 7): How good is an action in a
specific state following the given strategy p with respect to all
future rewards?

q"(s,a) = [Eﬂ[thsz = 93, A; =al, G;:= Zthz
>0
Either one tries to find a good estimate forz or for q — or for
both...




Part 2

Applications - optimization, reinforcement learning
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Model free agent - optimization algorithms
First test implementation

Scenario: maximize LEIR multi-turn injected intensity by optimizing
LEIR orbit at injection

Actions: trimmable high level parameters x, y, X', y’ @ injection point
The state space is defined by the actions x, y, X', y’
Reward: injected intensity




The policy

- The policy of first agent: Powell optimization algorithm
* Learns from the first few moves and estimates the best new
action (= direction)

(e

Z.6 z.7 2.8 z.9 2 Z.6 z.1 2.8 z.9 2

~N
~n

Classical taxi-cab policy - search along Powell’s policy - take the direction of
fixed directions (human approach) the average change

Pictures taken from: http://mathfaculty.fullerton.edu/mathews/n2003/PowellMethodMod.html




Implementation

- Python integrated in CERN control system
- CERN pyJAPC to interface with hardware and settings DB
- Can optimize scalar settings as well as function settings

- Generic, operational framework - extendable to other
machines (within minutes...)
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Achievements - LEIR

lel0 le8

14H — 2015
— 2016

- 2018: record injected R

[
N

s/bunch]

—
o

intensity into LEIR
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Achievements - other CERN machines

ction cavern to TT20 and

@ Beam Loss Monitor (BLM)
@ lonisation Chamber (PMIU) TCE (mask)

%irection 4

Example: automatic alignment of
electro-static septum for slow
extraction at the SPS

TPST (mask)

Normalized losses

K IMSE: thick magnetic septa
3x MST: thin magnetic septa

5x ZS: electrostatic septa

- 5 3.5 mlong tanks with moveable anodes

- 9 degrees of freedom to optimize; goal:
minimize losses in extraction channel

- Constrained to protect the hardware

- Reduced alignment time from ~ 8 h
(quasi- manual scans) to ~ 45 minutes
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What's next?

Successful application of Powell (and other) algorithms
across CERN injector chain

Simple, noise resistant, scalable, flexible
“Limitation”. needs to re-learn each time — slow

Next step:
Reinforcement learning
 Find the optimal policy




Reinforcement Learning - A proof
of principle experiment (pop):

The position of the elements

BHN10 BPM60

[ e, |

e The reward: Intensity of BCT10 BCT10

e The state: Position of the beam at BPM60

e The action: Change by = A or hold the value of dipole BHN10

Used to create a test case to learn to handle the algorithm, hyper-
parameters, artificial neural network architecture

CE/RW
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Find the optimal policy - the approach

Two main strategies in RL:

Find the policy directly (policy gradient) - computational intense - many
iterations

Find the Q function iteratively and from that a better policy -> Q learning

- The used algorithm: DQN learning - (Deep Q learning)
- Guaranty: Q learning converges to the optimal policy
- Model free approach e

reward
R, BCT10




The ingredients in more detail:

What is Q learning?
- Temporal difference (TD) iteration:

- Updating the Q - function iteratively - fast prediction
with low number of iterations (bootstrapping) -
online training possible

- Offline policy update rule:

Estimate including new information
Q*(S, A) < Q*(S, A) + al R +ymax,Q%(S,,, a’) — Q%(S, A))

e Discount factor ¥ TD-term

e | earnrate a




Pop results(1): Initial agent training

Training from scratch on LEIR approx.
600-iterations (measurement): * The agent was able to learn the

] task without any initial knowledge
150 and applied it successfully to
% ool different situations
8] N « The drawback - large number of
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S T T Apply the learned: real life test on different
| situations:recovered after a few moves
—— ER.BCTDC:FIRST_INJECTION_INTENSITY j:z: —— ER.BCTDC:FIRST_INJECTION_INTENSITY
2.0 A 1:50- d'
21-5' gl.zs- V
% 1.0 "’/V % -
i © o] 5 j

10..\,6 "L“A‘{‘ ’L“i‘\’% ’794'\’9 ’LQ"’LQ 19.;1,\, 10.;1,’1« 10@’5 "L“{Lb‘ Q.ygﬁ Q.y,‘» Q.y—ﬂ« {5‘6’5 o.y—,b‘ 0.5,‘9

time (hh:mm) time (hh:mm)

Projects on: https://gitlab.cern.ch/RL-group
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Pop results(2): New hybrid training

* Number of iterations reduced due to Powell training by a factor

of two

Powell - run
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Pop results(3): Further tuning

» Using better parameters and deep double Q learning (DDQN) method
Two independent networks to avoid a positive bias
* Number of iterations further reduced by a factor of three
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The implementation (python)

Used library: TensorFlow with the API-KERAS
Democratic machine learning: open ai gym!

Fit into this framework to have a standard
and learn from existing environments -
visualization...

Specific RL libraries:
keras-rl https://qgithub.com/keras-ri/keras-rl

Advanced users: TRFL- Reinforcement
Learning Building Blocks

Projects on: https://gitlab.cern.ch/RL-group

CE/RW
\

N/ S


https://github.com/keras-rl/keras-rl

Summary

Started to extensively use optimization algorithms in the
CERN injector chain in 2018

Mainly in LEIR, PS booster, ISOLDE, SPS

-> game changers for performance, ease of operation and
reproducibility

Next step: reinforcement learning

First successful proof-of-principle test for simple
process at LEIR injection

Sample efficiency is crucial, i.e. online training currently
long

Operational validity of training to be studied




Outlook

Collaboration with the University of Malta

Attack the problem of the sample efficiency - e.g.
embedding priors about the world, e.g., intuitive
physics

Develop relevant simulations - model based training
Upcoming tests on:

Linac4

AWAKE




Resources

The classic: Reinforcement Learning:
An Introduction (Barto & Sutton 2018)

A more mathematically rigorous approach:
https://sites.ualberta.ca/~szepesva/papers/RLAIgsInMDPs.pdf

Deepmind:
https://deepmind.com



https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf
https://deepmind.com

Thank you for your time

.

N——




Appendices




What means model free (in this context)?

Model free approach: Not treated explicitly probabilities to get
from a state s to a state s’ by taking the action a

Interesting if the underlying dynamics changes frequently
(e.g. LEIR) - partially observable Markov processes

Model - based approach —takes information of P into account
and draws simulated samples from an internal constructed
model and updates it before acting (the agent can plan -
extended MDP - information state included)

Internal model




An example (1)

What is a state? What is an action? What is a trajectory?
What is Q?

e Objective: reach the green squares as fast as possible

* The reward is -1 for each step! - short trajectories (sequence of states and
actions) and on the green square 0 (could loop forever).

b - [
2 CEECE &

* Obijective: Find the policy, which maximizes the (expected)

cumulative discounted reward G, = Z y'R, for all states.
>0




An example (2)

What is the dynamics?
The probability [P to end in a state s’ after taking an action a in state s

Random policy Best policy

SNEEE
ol [
R [T

Best policy with wind

Dynamics different - e.g. wind <—T N <—T

& XKl |Jd]d | |4

®

& e

If the approach is model free - the dynamics
Is not explicitly taken into account.




Important terms (1)

large v The discount factor:y € [0,1] G, = Z@Rr

>0
- Ensures convergence in any case

- Gives the possibility to take

uncertainty into account - how far
can/should we look into the

future?

small y

= large uncertainty




Our operational tool set...

- The methods are implemented - FEIR Hiah dimensions) ptmizaton orT

using scipy optimize

- Easy to use by everybody

mewss (au

- Framework easily adaptable to

other machines

Single parameter constrained optimization
(Brent)

Only runringvn
EARLY for the moment
L.ETIN1O.

>

-23408

-2.2400

Restore bnldal value

Don‘t werry e happy!

Linac3: ion source

Projects on: https://gitlab.cern.ch/PythonicOperationSoftware

Further reading on scipy optimize
https://www.scipy-lectures.org/advanced/mathematical_optimization/




What else can be done in this way?

. 2 Enerqgy distribution correction
- Target function can be a ¥ in LE?,%

function (eg. to a reference) -
or moments of a distribution

- Model free extremum .
seeking stabilization |

/.\
/A

orm amp. (1)




What algorithms to use for optimization in
operations

The situation (measurements) is delicate due to two facts:

A. The data is noisy
B. The number of evaluations is limited

e B = Excludes highly iterative codes
(simulated annealing, genetic algorithms, differential evolution, particle
swarm...)

e AAB = Zero order methods

e Consequently:

Downhill simplex method (Nelder Mead)
e Powell method

e Back up:
e Basin hopping (non convex — multiple minima)
e Brute scan - usually non feasible




Enhanced Powell's method - n dimensions

The start is to perform a line-search (e.g. Fibonacci search) in n
linearly independent directions, taking the optimum along one
directions as starting point for the next direction.

After n-steps a check is done if the average direction gives
improvement and is not dominated by a specific direction (avoid to
loose a specific direction) — if it is satisfied the direction of the
greatest decrease is replaced by the average direction.

The procedure is repeated until the convergence criteria are met.

The agent learns a part of the system response each time from
scratch.

The start policy improved dynamically.
A smart scanner.




A constrained policy

- How to protect the hardware/how to handle constrains
(borrowed from optimization theory)?

Barrier Methods:

Penalize for reaching the boundary of an inequality constraint
Penalty Methods:
Penalize for violating a constraint — not send to HW

- How can we handle changes not affecting the
hardware?

If changes are smaller as a specific minimum the change is not send to HW
and the change is treated as indifferent by Powell's method

Gives also a reduction of time consumption!




The ingredients in more detail (2):

Exploration/Exploitation problem: Avoid to get stuck in
a local optimum - contemporary mathematical issue...

Q learning - off policy (we can choose the policy - still
converges):

0(5.4) = QF(S.4) + ARy + THBX,Q7(S,,1.a)- Q7(S. A)

TD-erm

* An action is taken with a probability (1 — €)randomly

- otherwise(e -greedy) - random selections

slowly excluded.




The ingredients in more detail (3):

Approximation:

To handle the number of limited iterations: Use a
function approximator to beat “the curse of
dimensionality” - generalize!

Q is approximated by a (d)eep (n)etwork: (D)Q(N) -
deep learning

The TD term is used to update the network
+ Stability:

* The data is correlated due to the fact that it is
generated by trajectories - stability issues

* Solution: Experienced Replay:

« The trajectory is stored and shuffled -
correlation is reduced — better stability

f(-xla-xZ’ X3...,.Xn) = (y]’yZ’y:‘)""ym)

Y
~Y

Input Hidden Ouput
layer layer layer




The ingredients in more detail (4):

Recap - Why a neural network? Generalization!

- Universal function approximator /(1 X2, X3..., %) = (¥1: Y2, Y3-++5 V)

theorem: Any continuous R

function can be approximated {np‘“ Fidden Ouput
. . . ayer ayer ayer

with a finite ANN with one

hidden layer using a nonlinear \ Hy

activation function — projection Q n
in the vector space of nodes.

 The state space might be Q

intractable - we cannot visit

every state - the function is

“fitted”. /

A network with more than one hidden layer is called deep network




Back to theory: Global vs. local strategies to
find the best policy

* Finding the best global policy directly - policy
gradients:

* Monte Carlo - non biased but suffers from high
variance so requires a lot of samples.

* Not scalable + must compute V or Q for every Value Function
state (iteratively to the end).

« Challenge: sample-efficiency

* Finding the best policy iteratively temporal
difference learning:

* The Hamilton-Jacobi—-Bellman equation is used
as an update. What is the problem with this?

» Biased - the estimates of estimates...

* Challenge: bias

° Alternatives. GenetiC a|goritth swarm Taken from http://wwwO.cs.ucl.ac.uk/staff/D.Silver/web/Teaching_files/pg.pdf

optimization, etc...

CE/RW
\

N/ S



Some words about policy gradient

JO)=E,..[ ) r(s.a)]

- The policy is parametrized directly
and the gradient is taken as an
update

N
V() = Z Z Volog 7y(s; » 4 »Z F(Sip )

. Challenges High variance

Attempts to solve this: " pmmmmmm—
Baseline - Advantage function , —
- Unifying TD and policy gradient - )
actor-critic small bias/variance o [ Yl
- Used to solve continuous problems "o

—[ Environment J«

Taken from https://cs.wmich.edu/~trenary/files/
¢s5300/RLBook/node66.html




A unified view - best of both worlds

There is a continuum of
one step - temporal
difference (TD( A = 0))
to TD(A) - to complete
episodes (A =1)-
Monte Carlo

From myopic to farsighted

To be tested to find
optimum in simple
efficiency

of Vt\)lﬁzt:up .
Temporal- Dynamic _
difference programming
learning
height

Exhaustive
- -, search
0o a

. .
SN Ay
. .
, . ; -
. [ j .

Taken from Barto and Sutton




A new forum focus the efforts on machine
learning and advanced controls is needed:

Meeting to share experiences and get advices and
learn new technologies

Provide a general framework to use the technology

Centralize most popular tools as the optimizers —
some features are distributed to all applications,
some features stay individual — collecting data for
models...

Extend the functionality of the optimizers to learn
specific task using reinforcement learning







