

Automatic performance optimization and first steps towards reinforcement learning at the CERN Low Energy Ion Ring

Workshop: 2nd ICFA Workshop on Machine Learning for Charged Particle Accelerators 27 Feb. 2019

Simon Hirlaender,

Verena Kain, Michael Schenk

Overview

- Part 1: Introduction
- Part 2: Applications optimization, reinforcement learning
- Summary/Outlook

Part 1

Introduction

LEIR/SPS in the CERN complex

CERN's Accelerator Complex

Operating accelerators = correcting parameters

Observable, model and correctors....

- Well established CERN approach from LHC, SPS,.. - work with higher level parameters and deterministic algorithms, models
- Example SPS: improve transmission = reduce losses; e.g. reduce RMS orbit
 - Observable: 216 beam position monitors
 - Correctors: ~ 216 horizontal and vertical dipole corrector magnets
- Model based optimization based deterministic algorithms
 - Correction done in 2 3 clicks
 - MICADO, SVD,.. YASP (CERN Yet Another Steering Program)

Some of the accelerators and beam characteristics difficult to model

Examples:

- Space charge dominated beam dynamics in LINACs
- E-cooling setting-up
- Transmission optimization during transition crossing
- Alignment of collimators, electrostatic septa with many degrees of freedom

• • • •

What can be done to avoid manual scans and trial-and-error?

- Develop online models as much as possible
- Advanced optimization algorithms and reinforcement learning

Basic terminology of RL

The Reward Hypothesis: Goals and purposes = maximization of expected value of the cumulative sum of a received scalar signal - the reward.

RL - mathematical formalism

- Markov decision process (MDP) of the first order: <u>Current state s completely characterizes the state of the world.</u> The world is defined by (S, A, R, P, γ), which denotes the state-, action-, reward-spaces and the transition probabilities P, *R* is the current reward and γ the discount factor.
- <u>Objective</u>: Find the policy, which maximizes the (expected) cumulative discounted reward for a given state: $G_t = \sum \gamma^t R_t$

Important terms

• The (stochastic) policy π : What is the strategy to take actions?

$$\pi(a \mid s) = \mathbb{P}[A_t = a \mid S_t = s]$$

 The **q** function (for a given π): How good is an action in a specific state following the given strategy **p** with respect to all future rewards?

$$q^{\pi}(s,a) = \mathbb{E}^{\pi}[G_t | S_t = s, A_t = a], \quad G_t := \sum_{t \ge 0} \gamma^t R_t$$

 Either one tries to find a good estimate for π or for q → or for both...

Part 2

Applications - optimization, reinforcement learning

LEIR multi-turn injection with stacking

- 6D phase space painting <u>limited</u> • <u>diagnostics</u>
- E-cooling between injections to free space for • next injection

Median

Width

EARLY

NOMINA

MOFARLY

6

5

Sensitive to several interdependent • parameters (e.g. injected intensity)

Cooling performance of the Early -LEIR

18.12

18.10

18.08

Model free agent - optimization algorithms First test implementation

Scenario: maximize LEIR multi-turn injected intensity by optimizing LEIR orbit at injection

- Actions: trimmable high level parameters x, y, x', y' @ injection point
 - The state space is defined by the actions x, y, x', y'
- · Reward: injected intensity

The policy

- The policy of first agent: Powell optimization algorithm
 - Learns from the first few moves and estimates the best new action (= direction)

Classical taxi-cab policy - search along fixed directions (human approach)

Powell's policy - take the direction of the average change

Pictures taken from: http://mathfaculty.fullerton.edu/mathews/n2003/PowellMethodMod.html

Implementation

- Python integrated in CERN control system
 - CERN pyJAPC to interface with hardware and settings DB
 - Can optimize scalar settings as well as function settings
 - Generic, operational framework extendable to other machines (within minutes...)

Achievements - LEIR

- 2018: record injected intensity into LEIR (and LHC)
- Fast recovery after LEIR machine stops and drifts
- Reproducible
 performance

Result LHC 2018 for LEIR extracted intensity
--

75 ns	Mean /10 ¹⁰ c	Typical/10 ¹⁰ c	LIU/10 ¹⁰ c	
LHC run	8.9	9.4	0.0	
			0.0	

Achievements - other CERN machines

Example: automatic alignment of electro-static septum for slow extraction at the SPS

- 5 3.5 m long tanks with moveable anodes
 - 9 degrees of freedom to optimize; goal: minimize losses in extraction channel
 - Constrained to protect the hardware
- Reduced alignment time from ~ 8 h (quasi- manual scans) to ~ 45 minutes

Normalized losses

What's next?

- Successful application of Powell (and other) algorithms across CERN injector chain
 - Simple, noise resistant, scalable, flexible
- "Limitation": needs to re-learn each time \rightarrow <u>slow</u>

Next step:

Reinforcement learning

Find the optimal policy

Reinforcement Learning - A proof of principle experiment (pop):

The position of the elements

- The reward: Intensity of BCT10
- The state: Position of the beam at BPM60
- The action: Change by $\pm \Delta$ or hold the value of dipole BHN10

Used to create a test case to learn to handle the algorithm, hyperparameters, artificial neural network architecture

Find the optimal policy - the approach

- Two main strategies in RL:
 - Find the policy directly (policy gradient) → computational intense many iterations
 - Find the Q function iteratively and from that a better policy -> Q learning
- The used algorithm: DQN learning (Deep Q learning)
- Guaranty: Q learning converges to the optimal policy

The ingredients in more detail:

- What is Q learning?
- Temporal difference (TD) iteration:
 - Updating the Q function iteratively fast prediction with low number of iterations (bootstrapping) -<u>online training</u> possible
 - Offline policy update rule:

• Learn rate α

Pop results(1): Initial agent training

- The agent was able to learn the task without any initial knowledge and applied it successfully to different situations
- The drawback large number of iterations

Apply the learned: real life test on different situations:recovered after a few moves

Projects on: https://gitlab.cern.ch/RL-group

Pop results(2): New hybrid training

 Number of iterations reduced due to Powell training by a factor of two

Pop results(3): Further tuning

- Using better parameters and deep double Q learning (DDQN) method Two independent networks to avoid a positive bias
- Number of iterations further reduced by a factor of three

The implementation (python)

- Used library: **TensorFlow** with the **API-KERAS**
- Democratic machine learning: **open ai gym**!
 - Fit into this framework to have a standard and learn from existing environments visualization...
- Specific RL libraries:
 - keras-rl <u>https://github.com/keras-rl/keras-rl</u>
 - Advanced users: TRFL- Reinforcement Learning Building Blocks

Projects on: https://gitlab.cern.ch/RL-group

Summary

- Started to extensively use optimization algorithms in the CERN injector chain in 2018
 - Mainly in LEIR, PS booster, ISOLDE, SPS
- -> game changers for performance, ease of operation and reproducibility
- Next step: reinforcement learning
 - First successful proof-of-principle test for simple process at LEIR injection
 - Sample efficiency is crucial, i.e. online training currently long
 - Operational validity of training to be studied

Outlook

- Collaboration with the University of Malta
- <u>Attack the problem of the sample efficiency</u> e.g. embedding priors about the world, e.g., intuitive physics
- Develop relevant simulations model based training
- Upcoming tests on:
 - Linac4
 - AWAKE

Resources

- The classic: Reinforcement Learning: An Introduction (Barto & Sutton 2018)
- A more mathematically rigorous approach: https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf
- Deepmind:

https://deepmind.com

Thank you for your time

Appendices

What means model free (in this context)?

- <u>Model free approach</u>: Not treated explicitly probabilities to get from a state s to a state s' by taking the action a
- Interesting if the <u>underlying dynamics changes frequently</u> (e.g. LEIR) - partially observable Markov processes
- <u>Model based approach</u> → takes information of P into account and draws simulated samples from an internal constructed model and updates it before acting (the agent can plan extended MDP - information state included)

An example (1)

What is a state? What is an action? What is a trajectory? What is Q?

- Objective: reach the green squares as fast as possible
- The reward is -1 for each step! short trajectories (sequence of states and actions) and on the green square 0 (could loop forever).

• <u>Objective</u>: Find the policy, which maximizes the (expected) cumulative discounted reward $G_t = \sum_{t>0} \gamma^t R_t$ for all states.

An example (2)

What is the dynamics?

The probability \mathbb{P} to end in a state s' after taking an action a in state s

If the approach is model free - the dynamics is not explicitly taken into account.

Important terms (1)

large γ The discount factor: $\gamma \in [0,1]$ $G_t = \sum_{i=1}^{t} \gamma^t R_i$

- Ensures convergence in any case
- Gives the possibility to take uncertainty into account - how far can/should we look into the future?

 s_1''', r_0''

 s_2''', r_1''

 s'_1, r'_0

 s_2', r_1'

 $s_1^{\prime\prime},\,r_0^{\prime\prime}$

 s_{2}'', r_{1}'

Our operational tool set...

- The methods are implemented using <u>scipy optimize</u>
- Easy to use by everybody
- Framework easily adaptable to other machines

LEIR: High dimensional optimization of MTI

(Brent) Only running on Parameter evolution EARLY for the moment -0.2426 on ETL EHN10. -0.3428 -0.0430 -3.3432MClass -0.3434 -0.2436 Brent Average Nr. 8.34319 2 Get curren intensity prute proy tcan sange (+) 1.6 0.00010 * 1.4 12. Don't werry be happy

Single parameter constrained optimization

werage Re.

Don't worry be happy! Questions:

panagiotis.zisopoulos@cern.ch

siron.hiriaender@cern.ch/

Projects on: https://gitlab.cern.ch/PythonicOperationSoftware

Further reading on scipy optimize https://www.scipy-lectures.org/advanced/mathematical_optimization/

What else can be done in this way?

- Target function can be a χ^2 function (eg. to a reference) or moments of a distribution
- Model free extremum seeking stabilization

What algorithms to use for optimization in operations

The situation (measurements) is delicate due to two facts:

- A. The data is noisy
- B. The number of evaluations is limited
 - B ⇒ Excludes highly iterative codes (simulated annealing, genetic algorithms, differential evolution, particle swarm...)
 - $A \land B \Rightarrow$ Zero order methods
- Consequently:
 - Downhill simplex method (Nelder Mead)
 - Powell method
 - Back up:
 - Basin hopping (non convex multiple minima)
 - Brute scan usually non feasible

Enhanced Powell's method - n dimensions

- The start is to perform a line-search (e.g. Fibonacci search) in *n* linearly independent directions, taking the optimum along one directions as starting point for the next direction.
- After *n*-steps a check is done if the average direction gives improvement and is not dominated by a specific direction (avoid to loose a specific direction) → if it is satisfied the direction of the greatest decrease is replaced by the average direction.
- The procedure is repeated until the convergence criteria are met.
- The agent learns a part of the system response each time from scratch.
- The start policy improved dynamically.
- A smart scanner.

A constrained policy

- How to protect the hardware/how to handle constrains (borrowed from optimization theory)?
 - Barrier Methods:
 - Penalize for reaching the boundary of an inequality constraint
 - Penalty Methods:
 - Penalize for violating a constraint not send to HW
- How can we handle changes not affecting the hardware?
 - If changes are smaller as a specific minimum the change is not send to HW and the change is treated as indifferent by Powell's method
 - Gives also a reduction of time consumption!

The ingredients in more detail (2):

- Exploration/Exploitation problem: Avoid to get stuck in a local optimum contemporary mathematical issue...
- **Q learning -** off policy (we can choose the policy still converges):

$$Q^{\pi}(S,A) \leftarrow Q^{\pi}(S,A) + \underbrace{\alpha(R_{t+1} + \gamma \max_{a'} Q^{\pi}(S_{t+1},a')) - Q^{\pi}(S,A))}_{\textbf{TD-term}}$$

An action is taken with a probability (1 – ε) randomly

 otherwise greedy (ε-greedy) - random selections
 slowly excluded.

The ingredients in more detail (3):

- Approximation:
 - To handle the number of limited iterations: Use a function approximator to beat "the curse of dimensionality" - <u>generalize</u>!
 - Q is approximated by a (d)eep (n)etwork: (D)Q(N) deep learning
 - The TD term is used to update the network
- Stability:
 - The data is correlated due to the fact that it is generated by trajectories - stability issues
 - Solution: Experienced Replay:
 - The trajectory is stored and shuffled correlation is reduced \rightarrow better stability

The ingredients in more detail (4): Recap - Why a neural network? Generalization!

- Universal function approximator theorem: Any continuous function can be approximated with a finite ANN with one hidden layer using a nonlinear activation function → projection in the vector space of nodes.
- The state space might be intractable - we cannot visit every state - the function is "fitted".

 $f(x_1, x_2, x_3, \dots, x_n) = (y_1, y_2, y_3, \dots, y_m)$

A network with more than one hidden layer is called deep network

Back to theory: Global vs. local strategies to find the best policy

- Finding the best global policy directly policy gradients:
 - Monte Carlo non biased but suffers from high variance so requires a lot of samples.
 - Not scalable + must compute V or Q for every state (iteratively to the end).
 - Challenge: sample-efficiency
- Finding the best policy iteratively temporal difference learning:
 - The Hamilton–Jacobi–Bellman equation is used as an update. What is the problem with this?
 - Biased the estimates of estimates...
 - Challenge: bias
- Alternatives: Genetic algorithms, swarm optimization, etc...

Taken from http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching_files/pg.pdf

Some words about policy gradient

 The policy is parametrized directly and the gradient is taken as an update:

 $\nabla_{\theta} J(\theta) = \frac{1}{N} \sum_{i}^{T} \sum_{t} \nabla_{\theta} \log \pi_{\theta}(s_{i,t}, a_{i,t}) \sum_{t} r_{t}(s_{i,t}, a_{i,t})$

- Challenges: High variance
- Attempts to solve this:
 - Baseline Advantage function
- Unifying TD and policy gradient actor-critic small bias/variance
- Used to solve continuous problems

Taken from http://rll.berkeley.edu/deeprlcourse/ f17docs/lecture_4_policy_gradient.pdf

Taken from https://cs.wmich.edu/~trenary/files/ cs5300/RLBook/node66.html

A unified view - best of both worlds

- There is a continuum of one step - temporal difference (TD($\lambda = 0$)) to TD(λ) - to complete episodes ($\lambda = 1$) -Monte Carlo
- From myopic to farsighted
- To be tested to find optimum in simple efficiency

A new forum focus the efforts on machine learning and advanced controls is needed:

- Meeting to share experiences and get advices and learn new technologies
- Provide a general framework to use the technology
- Centralize most popular tools as the optimizers some features are distributed to all applications, some features stay individual — collecting data for models...
- Extend the functionality of the optimizers to learn specific task using reinforcement learning

