

Automatic performance optimization and first steps towards

reinforcement learning at the CERN Low Energy lon Ring
Workshop: 2nd ICFA Workshop on Machine Learning for Charged Particle Accelerators

Simon Hirlaender,
Verena Kain, Michael Schenk

Overview

Part 1: Introduction

Part 2: Applications - optimization, reinforcement
learning

Summary/Outlook

Part 1

Introduction

LEIR/SPS in the CERN complex

CERN's Accelerator Complex

LHC

2008 (27 km)

North e LEIR: first synchrotron in
the LHC ion chain

lon species:

Lead 54%

Energy range:
4.2 MeV/u — 72 MeV/u

SPS ‘ﬁ P

1976 (7 km) 3

ATLAS l £y
TT60

ELENA
BOOSTER

@
n-ToF
neutrons

HiRadMat

112

&\ LER
YA 2005 (78 m)

) ion) neutrons) p (antiproton)) electron $-+)- proton/antiproton conversion

Operating accelerators = correcting parameters

Observable, model and correctors....

- Well established CERN approach from LHC,
SPS,.. - work with higher level parameters and
deterministic algorithms, models ,

&H s _status-Control el Stesring Trin Machine-specials Help

'WW@“’“#JII A % X&- rr—] G

SPS.USERSFTION [Data sets | Dataset Control b

@EZ ‘ >> Ref H >> DV \,‘ >> DV Ref “ M,v,,,, "

[DV Ref. Visible | ‘¥ Sub-configuration selection

- Example SPS: improve transmission = reduce = = | mmeo @ e
; e AL Acausiion <]
losses; e.g. reduce RMS orbit =

- Observable: 216 beam position monitors e o

|
« Correctors: ~ 216 horizontal and vertical .
. e, BRER O W a B | 7 Shoscror. 0,45 Looee F 1. oga. 2o G
d I po I e CO rreCtO r m ag n etS FT@0ms -P 17.070 GeV/c - SC I_FB3020_| 2_Q. “J,: 5 JMJ ISPSRING [5-->0]

election on Cycle -> > = 1 BF - accer,
P

no,
> BP SFT_ION_4in]_E380.49_1908

no.
> BP SFT_ION_4in]_E380.49_1908
> BP SFT_ION_4in]_E380.49_1908
no,

> BP SFT_ION_4in]_E380.49_1908

8P no.
--> BP SFT_ION_4in]_E380.49_1908
BF 0. 6

> BP SFT_ION_4in]_E380.49_1908
am offset time = 725

- Selection start time is 0

~ Selection resident status is true
Particle Transfer - User is SPS_USER SFTION1

- Looking for optics in context SFT_ION_4

[spsRinG ~ Found optics collection of size 23
Beam Processes ~ Looking for config - SPSRING
s Dsub. do/p GPSRINGIBP (0525200)] |- Adding accelerator zone SPs

Load Last

SPSRING_STCY_13.5_17.07_FT_Pb82_2010 (0->
SPSRING_4INJ17.07_L7820_FT_Pb82_2012 (725
SPSRING_ACC_SHOOTIE_17.07_26_Pb82_2012 (8!

QN
|
|
|

B1>25200) k. = i
s{Mean = 0.000 / NS = 0, a1 i I D
PR [operaTiONAL Select All
£
1 | e |
£
= No Exception to display...
6 =
. . .
° o 2 0 50 &0 100
Monitor H NZACD
FT@0ms -P 17.070 GeV/c- SC # -1 - SPS.USERSFTION - 27/11/18 08-29-54. b

deterministic algorithms]
+ Correction done in 2 - 3 clicks

- MICADO, SVD,.. YASP (CERN - Yet
Another Steering Program

on s

V Pos [mm]

But...

Some of the accelerators and beam characteristics difficult to model

Examples:

» Space charge dominated beam dynamics in LINACs
« E-cooling setting-up

* Transmission optimization during transition crossing

 Alignment of collimators, electrostatic septa with many degrees of
freedom

What can be done to avoid manual scans and trial-and-error?
* Develop online models as much as possible
* Advanced optimization algorithms and reinforcement learning

CE/RW
\

N/ S

Basic terminology of RL

I Upd li
An experiment - How to teach my cat pdate policy (p)
the command “sit"?

Take action (A)
State () based on policy (p) Reward (R)

H - A — h_, The cat is the agent.

The Reward Hypothesis: Goals and purposes =

maximization of expected value of the cumulative sum of
a received scalar signal - the reward.

cﬁw
\

N/ S

RL - mathematical formalism

 Markov decision process (MDP) of the first order:
Current state s completely characterizes the state of the world.

The world is defined by (&, &, £, &, y), which denotes the
state-, action-, reward-spaces and the transition probabilities P,

R is the current reward and y the discount factor.

* QObjective: Find the policy, which maximizes the (expected)
cumulative discounted reward for a given state:
umulativ g G, = Z y! R,

>0

y € [0,1]

action
A,

Important terms

The (stochastic) policy 7 : What is the strategy to take actions?

m(als) =P[A, =alS§, = s]

The q function (for a given 7): How good is an action in a
specific state following the given strategy p with respect to all
future rewards?

q"(s,a) = [Eﬂ[thsz = 93, A; =al, G;:= Zthz
>0
Either one tries to find a good estimate forz or for q — or for
both...

Part 2

Applications - optimization, reinforcement learning

horiz. & 200 us
- 1A - 1 position ; :
LEIR multi-turn injection with copum 1 incoming beam
StaCklng ~ ot b+Dip/pir
Incoming beam
. 6!:) phasg space painting — limited N T ort;.t bump b
diagnostics < S .
. . . \'\ stack time
. E-cooling between injections to free space for *‘orbétuzhtig?émpm
next injection Longitudinal Schottky NR:
- Sensitive to several interdependent] = -
1.

parameters (e.q. injected intensity)

Cooling performance of the Early -LEIR

18.12

18.10

18.08

T 18.06

=

g 18.04
18.02
18.00

17.98

0 50 100 150 200 250 300
time (s)

Model free agent - optimization algorithms
First test implementation

Scenario: maximize LEIR multi-turn injected intensity by optimizing
LEIR orbit at injection

Actions: trimmable high level parameters x, y, X', y’ @ injection point
The state space is defined by the actions x, y, X', y’
Reward: injected intensity

The policy

- The policy of first agent: Powell optimization algorithm
* Learns from the first few moves and estimates the best new
action (= direction)

(e

Z.6 z.7 2.8 z.9 2 Z.6 z.1 2.8 z.9 2

~N
~n

Classical taxi-cab policy - search along Powell’s policy - take the direction of
fixed directions (human approach) the average change

Pictures taken from: http://mathfaculty.fullerton.edu/mathews/n2003/PowellMethodMod.html

Implementation

- Python integrated in CERN control system
- CERN pyJAPC to interface with hardware and settings DB
- Can optimize scalar settings as well as function settings

- Generic, operational framework - extendable to other
machines (within minutes...)

The algorithm selector and
hyperparameters The (dynamic) statistics

The actions |

Change the
|_— reward function

arameter evolution .
c
Y
i
M
od
IRBI H_1mm e
IRB! H_1mrad frol (0.0100 =
RB v 1mm Observable
— LEIRBI V_1mrad Average Nr. |1 2
Maximum
Intensity o Area
18
14

,,,,,,,,,,,, Action selector
(defines order) +
-|_ initial steps -

Imm
1mrad '
import
93 2
88 200 650
84 Start
80 store old values
5 10 15 20 25
NNNNNNNNNNN Set maximum of run
Don't worry be happy! Questions:
A € > Q=W simon.hirlaender@cern.ch

. N
The reward function _Reset or
(inclusive error) jump to max

Achievements - LEIR

lel0 le8

14H — 2015
— 2016

- 2018: record injected R

[
N

s/bunch]

—
o

intensity into LEIR
(and LHC)
- Fast recovery after T o™ o o
LEIR machine stops
and drlftS Result LHC 2018 for LEIR extracted intensity
- Reproducible 75ns

LHC run 8.9 9.4

performance 8.8

Achievements - other CERN machines

ction cavern to TT20 and

@ Beam Loss Monitor (BLM)
@ lonisation Chamber (PMIU) TCE (mask)

%irection 4

Example: automatic alignment of
electro-static septum for slow
extraction at the SPS

TPST (mask)

Normalized losses

K IMSE: thick magnetic septa
3x MST: thin magnetic septa

5x ZS: electrostatic septa

- 5 3.5 mlong tanks with moveable anodes

- 9 degrees of freedom to optimize; goal:
minimize losses in extraction channel

- Constrained to protect the hardware

- Reduced alignment time from ~ 8 h
(quasi- manual scans) to ~ 45 minutes

CE/RW
\

N/ S

What's next?

Successful application of Powell (and other) algorithms
across CERN injector chain

Simple, noise resistant, scalable, flexible
“Limitation”. needs to re-learn each time — slow

Next step:
Reinforcement learning
 Find the optimal policy

Reinforcement Learning - A proof
of principle experiment (pop):

The position of the elements

BHN10 BPM60

[e, |

e The reward: Intensity of BCT10 BCT10

e The state: Position of the beam at BPM60

e The action: Change by = A or hold the value of dipole BHN10

Used to create a test case to learn to handle the algorithm, hyper-
parameters, artificial neural network architecture

CE/RW
\

N/ S

Find the optimal policy - the approach

Two main strategies in RL:

Find the policy directly (policy gradient) - computational intense - many
iterations

Find the Q function iteratively and from that a better policy -> Q learning

- The used algorithm: DQN learning - (Deep Q learning)
- Guaranty: Q learning converges to the optimal policy
- Model free approach e

reward
R, BCT10

The ingredients in more detail:

What is Q learning?
- Temporal difference (TD) iteration:

- Updating the Q - function iteratively - fast prediction
with low number of iterations (bootstrapping) -
online training possible

- Offline policy update rule:

Estimate including new information
Q*(S, A) < Q*(S, A) + al R +ymax,Q%(S,,, a’) — Q%(S, A))

e Discount factor ¥ TD-term

e | earnrate a

Pop results(1): Initial agent training

Training from scratch on LEIR approx.
600-iterations (measurement): * The agent was able to learn the

] task without any initial knowledge
150 and applied it successfully to
% ool different situations
8] N « The drawback - large number of
0221 J —— ER.BCTDC:FIRST_INJECTION_INTENSITY iterations
S T T Apply the learned: real life test on different
| situations:recovered after a few moves
—— ER.BCTDC:FIRST_INJECTION_INTENSITY j:z: —— ER.BCTDC:FIRST_INJECTION_INTENSITY
2.0 A 1:50- d'
21-5' gl.zs- V
% 1.0 "’/V % -
i © o] 5 j

10..\,6 "L“A‘{‘ ’L“i‘\’% ’794'\’9 ’LQ"’LQ 19.;1,\, 10.;1,’1« 10@’5 "L“{Lb‘ Q.ygﬁ Q.y,‘» Q.y—ﬂ« {5‘6’5 o.y—,b‘ 0.5,‘9

time (hh:mm) time (hh:mm)

Projects on: https://gitlab.cern.ch/RL-group

\

Pop results(2): New hybrid training

* Number of iterations reduced due to Powell training by a factor

of two

Powell - run

—0.3381 —— reward —— action
2.0
~0.340
1.5
~0.342
1.0
< —0.344 4 z
2 2
o [
© _0.346 ros g
~0.348 ro.o
~0.350 r—05
-0.352 r-10
0 20 40 60 80 100
After training with Powell run data
Agent takes direction 5 = 2.00
— Wait
Increase 0ptimum 1.75
Agent waits 41 —— Decrease
1.50
34
) L1.25 ©
< Y]
L, L1.00 2
c)
[o
0.75
14
0.50
0
0.25
-1 0.00

20 30

/ —'20 —'10 (') 1'0
BPM position

Simulated response

=

N/ S

action

anjea-p

Training - run after tuning with Powell

—0.3381 actipn
k2.0
—0.340
F1.5
-0.342
k1.
—0.344 0 ko
@
]
~0.346 1 ros g
-0.348 0.0
~0.350 r=0.5
—0.352 1 —— reward [_1 ¢
0 50 100 150 200 250 300
After training
4
— Wait
Increase 0ptimum 175
31 — Decrease L 150
r1.25o
2] 3
F1.00 =
[0}
1 Lo.75
I 0.50
0
L0.25
1 I 0.00
-20 -10 0 10 20 30
BPM position

Pop results(3): Further tuning

» Using better parameters and deep double Q learning (DDQN) method
Two independent networks to avoid a positive bias
* Number of iterations further reduced by a factor of three

Agent takes direction

Agent waits

action

-0.3415

-0.3420

-0.3425

-0.3430

-0.3435

-0.3440

-0.3445

Shuffled Powell - run

\ M
o

V 0.0
~— reward

1.0

intensity

0.5

0 10 20 30 40 50 60

After training with Powell run data

201

151

anfeA-p

~

Optimum

— Wait
Increase
—— Decrease

-20 -10 0 10 20 30

BPM position

I 2.00

r1.75

F1.50

F1.25

F1.00

F0.75

r0.50

F0.25

F0.00

Reward

action

Training - run after tuning with Powell

— action
~0.3415
F2.0
—0.3420
1.5
—0.3425
2
w
—0.3430 H 105
£
—0.3435
Lo.s
—0.3440
0.0
—0.3445 — reward
0 20 40 60 80 100
After training
b AN
Optimum F2.00
12 A
F1.75
101 \
F1.50
8 4
S — Wait F1.25
0 6 Increase 1.00
C - rl.
o Decrease
4 L0.75
21 +0.50
0 i F0.25
0.00

~1o 0 10 20 30

BPM position

~20

Reward

The implementation (python)

Used library: TensorFlow with the API-KERAS
Democratic machine learning: open ai gym!

Fit into this framework to have a standard
and learn from existing environments -
visualization...

Specific RL libraries:
keras-rl https://qgithub.com/keras-ri/keras-rl

Advanced users: TRFL- Reinforcement
Learning Building Blocks

Projects on: https://gitlab.cern.ch/RL-group

CE/RW
\

N/ S

https://github.com/keras-rl/keras-rl

Summary

Started to extensively use optimization algorithms in the
CERN injector chain in 2018

Mainly in LEIR, PS booster, ISOLDE, SPS

-> game changers for performance, ease of operation and
reproducibility

Next step: reinforcement learning

First successful proof-of-principle test for simple
process at LEIR injection

Sample efficiency is crucial, i.e. online training currently
long

Operational validity of training to be studied

Outlook

Collaboration with the University of Malta

Attack the problem of the sample efficiency - e.g.
embedding priors about the world, e.g., intuitive
physics

Develop relevant simulations - model based training
Upcoming tests on:

Linac4

AWAKE

Resources

The classic: Reinforcement Learning:
An Introduction (Barto & Sutton 2018)

A more mathematically rigorous approach:
https://sites.ualberta.ca/~szepesva/papers/RLAIgsInMDPs.pdf

Deepmind:
https://deepmind.com

https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf
https://deepmind.com

Thank you for your time

.

N——

Appendices

What means model free (in this context)?

Model free approach: Not treated explicitly probabilities to get
from a state s to a state s’ by taking the action a

Interesting if the underlying dynamics changes frequently
(e.g. LEIR) - partially observable Markov processes

Model - based approach —takes information of P into account
and draws simulated samples from an internal constructed
model and updates it before acting (the agent can plan -
extended MDP - information state included)

Internal model

An example (1)

What is a state? What is an action? What is a trajectory?
What is Q?

e Objective: reach the green squares as fast as possible

* The reward is -1 for each step! - short trajectories (sequence of states and
actions) and on the green square 0 (could loop forever).

b - [
2 CEECE &

* Obijective: Find the policy, which maximizes the (expected)

cumulative discounted reward G, = Z y'R, for all states.
>0

An example (2)

What is the dynamics?
The probability [P to end in a state s’ after taking an action a in state s

Random policy Best policy

SNEEE
ol [
R [T

Best policy with wind

Dynamics different - e.g. wind <—T N <—T

& XKl |Jd]d | |4

®

& e

If the approach is model free - the dynamics
Is not explicitly taken into account.

Important terms (1)

large v The discount factor:y € [0,1] G, = Z@Rr

>0
- Ensures convergence in any case

- Gives the possibility to take

uncertainty into account - how far
can/should we look into the

future?

small y

= large uncertainty

Our operational tool set...

- The methods are implemented - FEIR Hiah dimensions) ptmizaton orT

using scipy optimize

- Easy to use by everybody

mewss (au

- Framework easily adaptable to

other machines

Single parameter constrained optimization
(Brent)

Only runringvn
EARLY for the moment
L.ETIN1O.

>

-23408

-2.2400

Restore bnldal value

Don‘t werry e happy!

Linac3: ion source

Projects on: https://gitlab.cern.ch/PythonicOperationSoftware

Further reading on scipy optimize
https://www.scipy-lectures.org/advanced/mathematical_optimization/

What else can be done in this way?

. 2 Enerqgy distribution correction
- Target function can be a ¥ in LE?,%

function (eg. to a reference) -
or moments of a distribution

- Model free extremum .
seeking stabilization |

/.\
/A

orm amp. (1)

What algorithms to use for optimization in
operations

The situation (measurements) is delicate due to two facts:

A. The data is noisy
B. The number of evaluations is limited

e B = Excludes highly iterative codes
(simulated annealing, genetic algorithms, differential evolution, particle
swarm...)

e AAB = Zero order methods

e Consequently:

Downhill simplex method (Nelder Mead)
e Powell method

e Back up:
e Basin hopping (non convex — multiple minima)
e Brute scan - usually non feasible

Enhanced Powell's method - n dimensions

The start is to perform a line-search (e.g. Fibonacci search) in n
linearly independent directions, taking the optimum along one
directions as starting point for the next direction.

After n-steps a check is done if the average direction gives
improvement and is not dominated by a specific direction (avoid to
loose a specific direction) — if it is satisfied the direction of the
greatest decrease is replaced by the average direction.

The procedure is repeated until the convergence criteria are met.

The agent learns a part of the system response each time from
scratch.

The start policy improved dynamically.
A smart scanner.

A constrained policy

- How to protect the hardware/how to handle constrains
(borrowed from optimization theory)?

Barrier Methods:

Penalize for reaching the boundary of an inequality constraint
Penalty Methods:
Penalize for violating a constraint — not send to HW

- How can we handle changes not affecting the
hardware?

If changes are smaller as a specific minimum the change is not send to HW
and the change is treated as indifferent by Powell's method

Gives also a reduction of time consumption!

The ingredients in more detail (2):

Exploration/Exploitation problem: Avoid to get stuck in
a local optimum - contemporary mathematical issue...

Q learning - off policy (we can choose the policy - still
converges):

0(5.4) = QF(S.4) + ARy + THBX,Q7(S,,1.a)- Q7(S. A)

TD-erm

* An action is taken with a probability (1 — €)randomly

- otherwise(e -greedy) - random selections

slowly excluded.

The ingredients in more detail (3):

Approximation:

To handle the number of limited iterations: Use a
function approximator to beat “the curse of
dimensionality” - generalize!

Q is approximated by a (d)eep (n)etwork: (D)Q(N) -
deep learning

The TD term is used to update the network
+ Stability:

* The data is correlated due to the fact that it is
generated by trajectories - stability issues

* Solution: Experienced Replay:

« The trajectory is stored and shuffled -
correlation is reduced — better stability

f(-xla-xZ’ X3...,.Xn) = (y]’yZ’y:‘)""ym)

Y
~Y

Input Hidden Ouput
layer layer layer

The ingredients in more detail (4):

Recap - Why a neural network? Generalization!

- Universal function approximator /(1 X2, X3..., %) = (¥1: Y2, Y3-++5 V)

theorem: Any continuous R

function can be approximated {np‘“ Fidden Ouput
. . . ayer ayer ayer

with a finite ANN with one

hidden layer using a nonlinear \ Hy

activation function — projection Q n
in the vector space of nodes.

 The state space might be Q

intractable - we cannot visit

every state - the function is

“fitted”. /

A network with more than one hidden layer is called deep network

Back to theory: Global vs. local strategies to
find the best policy

* Finding the best global policy directly - policy
gradients:

* Monte Carlo - non biased but suffers from high
variance so requires a lot of samples.

* Not scalable + must compute V or Q for every Value Function
state (iteratively to the end).

« Challenge: sample-efficiency

* Finding the best policy iteratively temporal
difference learning:

* The Hamilton-Jacobi—-Bellman equation is used
as an update. What is the problem with this?

» Biased - the estimates of estimates...

* Challenge: bias

° Alternatives. GenetiC a|goritth swarm Taken from http://wwwO.cs.ucl.ac.uk/staff/D.Silver/web/Teaching_files/pg.pdf

optimization, etc...

CE/RW
\

N/ S

Some words about policy gradient

JO)=E,..[) r(s.a)]

- The policy is parametrized directly
and the gradient is taken as an
update

N
V() = Z Z Volog 7y(s; » 4 »Z F(Sip)

. Challenges High variance

Attempts to solve this: " pmmmmmm—
Baseline - Advantage function , —
- Unifying TD and policy gradient -)
actor-critic small bias/variance o [Yl
- Used to solve continuous problems "o

—[Environment J«

Taken from https://cs.wmich.edu/~trenary/files/
¢s5300/RLBook/node66.html

A unified view - best of both worlds

There is a continuum of
one step - temporal
difference (TD(A = 0))
to TD(A) - to complete
episodes (A =1)-
Monte Carlo

From myopic to farsighted

To be tested to find
optimum in simple
efficiency

of Vt\)lﬁzt:up .
Temporal- Dynamic _
difference programming
learning
height

Exhaustive
- -, search
0o a

. .
SN Ay
. .
, . ; -
. [j .

Taken from Barto and Sutton

A new forum focus the efforts on machine
learning and advanced controls is needed:

Meeting to share experiences and get advices and
learn new technologies

Provide a general framework to use the technology

Centralize most popular tools as the optimizers —
some features are distributed to all applications,
some features stay individual — collecting data for
models...

Extend the functionality of the optimizers to learn
specific task using reinforcement learning

