

Automatic performance optimization and first steps towards
reinforcement learning at the CERN Low Energy Ion Ring
Workshop: 2nd ICFA Workshop on Machine Learning for Charged Particle Accelerators
27 Feb. 2019
Simon Hirlaender,
Verena Kain, Michael Schenk

Overview

• Part 1: Introduction

• Part 2: Applications - optimization, reinforcement
learning

• Summary/Outlook

!3

Part 1
Introduction

LEIR/SPS in the CERN complex

!5

LEIR: first synchrotron in
the LHC ion chain
Ion species:

Energy range:
Lead 54+

4.2 MeV/u − 72 MeV/u

Operating accelerators = correcting parameters

• Well established CERN approach from LHC,
SPS,.. - work with higher level parameters and
deterministic algorithms, models

• Example SPS: improve transmission = reduce
losses; e.g. reduce RMS orbit

• Observable: 216 beam position monitors
• Correctors: ~ 216 horizontal and vertical

dipole corrector magnets

• Model based optimization based -
deterministic algorithms

• Correction done in 2 - 3 clicks
• MICADO, SVD,.. YASP (CERN - Yet

Another Steering Program)

!6

Observable, model and correctors….

YASP

But…

Some of the accelerators and beam characteristics difficult to model

Examples:
• Space charge dominated beam dynamics in LINACs
• E-cooling setting-up
• Transmission optimization during transition crossing
• Alignment of collimators, electrostatic septa with many degrees of

freedom
• …

What can be done to avoid manual scans and trial-and-error?
• Develop online models as much as possible
• Advanced optimization algorithms and reinforcement learning

!7

Basic terminology of RL

!8

An experiment - How to teach my cat
the command “sit”?

Sit!

=

=
State (S) Take action (A)

based on policy (p) Reward (R)

Update policy (p)

1.

2.

Sit!

Sit!

The Reward Hypothesis: Goals and purposes =
maximization of expected value of the cumulative sum of
a received scalar signal - the reward.

The cat is the agent.

RL - mathematical formalism
• Markov decision process (MDP) of the first order:

Current state s completely characterizes the state of the world.
The world is defined by , which denotes the
state-, action-, reward-spaces and the transition probabilities ,
R is the current reward and the discount factor.

• Objective: Find the policy, which maximizes the (expected)
cumulative discounted reward for a given state:

γ

!9

(𝒮, 𝒜, ℛ, 𝒫, γ)

Gt = ∑
t≥0

γtRt

γ ∈ [0,1]

ℙ

• The (stochastic) policy : What is the strategy to take actions?

• The q function (for a given): How good is an action in a
specific state following the given strategy p with respect to all
future rewards?

• Either one tries to find a good estimate for or for q or for
both…

!10

Important terms

qπ(s, a) = 𝔼π[Gt |St = s, At = a],

π(a |s) = ℙ[At = a |St = s]

Gt := ∑
t≥0

γtRt

π

π

π →

Part 2
Applications - optimization, reinforcement learning

200 μs

1.

2.

3.

4.

5.

6.

7.

Longitudinal Schottky NR:

S
ta

ck
ed

 b
ea

m

Dragging

LEIR multi-turn injection with
stacking

!12

1

2
3

4
5

6
7

• 6D phase space painting — limited
diagnostics

• E-cooling between injections to free space for
next injection

• Sensitive to several interdependent
parameters (e.g. injected intensity)

Model free agent - optimization algorithms
First test implementation

Scenario: maximize LEIR multi-turn injected intensity by optimizing
LEIR orbit at injection

• Actions: trimmable high level parameters x, y, x’, y’ @ injection point
• The state space is defined by the actions x, y, x’, y’

• Reward: injected intensity

!13

The policy
• The policy of first agent: Powell optimization algorithm

• Learns from the first few moves and estimates the best new
action (= direction)

!14

Pictures taken from: http://mathfaculty.fullerton.edu/mathews/n2003/PowellMethodMod.html

Powell’s policy - take the direction of
the average change

Classical taxi-cab policy - search along
fixed directions (human approach)

Implementation
• Python integrated in CERN control system

• CERN pyJAPC to interface with hardware and settings DB
• Can optimize scalar settings as well as function settings
• Generic, operational framework - extendable to other

machines (within minutes…)

!15

The actions

The (dynamic) statistics

Action selector
(defines order) +
initial steps -
import!

The algorithm selector and
hyperparameters

The reward function
(inclusive error)

Change the
reward function

Reset or
jump to max

Achievements - LEIR

!16

Courtesy: N.Biancacci

• 2018: record injected
intensity into LEIR
(and LHC)

• Fast recovery after
LEIR machine stops
and drifts

• Reproducible
performance

Result LHC 2018 for LEIR extracted intensity

Achievements - other CERN machines

Example: automatic alignment of
electro-static septum for slow
extraction at the SPS

• 5 3.5 m long tanks with moveable anodes
• 9 degrees of freedom to optimize; goal:

minimize losses in extraction channel
• Constrained to protect the hardware

• Reduced alignment time from ~ 8 h
(quasi- manual scans) to ~ 45 minutes

!17

Normalized losses

What’s next?
• Successful application of Powell (and other) algorithms

across CERN injector chain
• Simple, noise resistant, scalable, flexible

• “Limitation”: needs to re-learn each time slow

!18

Next step:
Reinforcement learning

• Find the optimal policy

→

Reinforcement Learning - A proof
of principle experiment (pop):

!19

Used to create a test case to learn to handle the algorithm, hyper-
parameters, artificial neural network architecture

• The reward: Intensity of BCT10

• The state: Position of the beam at BPM60

• The action: Change by or hold the value of dipole BHN10±Δ

BHN10 BPM60

BCT10

Linac3

The position of the elements

LEIR
Beam

Beam

Beam

!20

Find the optimal policy - the approach
• Two main strategies in RL:

• Find the policy directly (policy gradient) computational intense - many
iterations

• Find the Q function iteratively and from that a better policy -> Q learning

...

...
...

x1

x2

x3

xn

H1

Hl

y1

ym

Input
layer

Hidden
layer

Ouput
layer

BHN10BCT10
BPM60

• The used algorithm: DQN learning - (Deep Q learning)
• Guaranty: Q learning converges to the optimal policy
• Model free approach

→

The ingredients in more detail:
• What is Q learning?

• Temporal difference (TD) iteration:

• Updating the Q - function iteratively - fast prediction
with low number of iterations (bootstrapping) -
online training possible

• Offline policy update rule:

!21

Qπ(S, A) ← Qπ(S, A) + α (
Estimate including new information

Rt+1 + γmaxa′�Qπ(St+1, a′�) − Qπ(S, A))

TD-term• Discount factor γ
α• Learn rate

Pop results(1): Initial agent training

!22

Training from scratch on LEIR approx.
600-iterations (measurement):

Apply the learned: real life test on different
situations:recovered after a few moves

Projects on: https://gitlab.cern.ch/RL-group

• The agent was able to learn the
task without any initial knowledge
and applied it successfully to
different situations

• The drawback - large number of
iterations

!23

• Number of iterations reduced due to Powell training by a factor
of two

Pop results(2): New hybrid training

Powell - run

After training with Powell run data

Training - run after tuning with Powell

After training

Optimum Optimum
Agent takes direction

 Agent waits

Q
-value

Q
-valueRe

w
ar

d

Re
w

ar
d

BPM position BPM positionSimulated response

Pop results(3): Further tuning
• Using better parameters and deep double Q learning (DDQN) method
 Two independent networks to avoid a positive bias
• Number of iterations further reduced by a factor of three

!24

Shuffled Powell - run

After training with Powell run data

Training - run after tuning with Powell

After training

Optimum Optimum

Agent takes direction

 Agent waits

Re
w

ar
dQ

-valueRe
w

ar
dQ

-value

BPM position BPM position

The implementation (python)
• Used library: TensorFlow with the API-KERAS
• Democratic machine learning: open ai gym!

• Fit into this framework to have a standard
and learn from existing environments -
visualization…

• Specific RL libraries:
• keras-rl https://github.com/keras-rl/keras-rl
• Advanced users: TRFL- Reinforcement

Learning Building Blocks

!25

Projects on: https://gitlab.cern.ch/RL-group

https://github.com/keras-rl/keras-rl

Summary
• Started to extensively use optimization algorithms in the

CERN injector chain in 2018
• Mainly in LEIR, PS booster, ISOLDE, SPS

• -> game changers for performance, ease of operation and
reproducibility

• Next step: reinforcement learning
• First successful proof-of-principle test for simple

process at LEIR injection
• Sample efficiency is crucial, i.e. online training currently

long
• Operational validity of training to be studied

!26

Outlook
• Collaboration with the University of Malta
• Attack the problem of the sample efficiency - e.g.

embedding priors about the world, e.g., intuitive
physics

• Develop relevant simulations - model based training
• Upcoming tests on:

• Linac4
• AWAKE

!27

Resources

• The classic: Reinforcement Learning:
An Introduction (Barto & Sutton 2018)

• A more mathematically rigorous approach:
https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf

• Deepmind:
 https://deepmind.com

!28

https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf
https://deepmind.com

Thank you for your time

!29

Appendices

!30

What means model free (in this context)?

• Model free approach: Not treated explicitly probabilities to get
from a state s to a state s’ by taking the action a

• Interesting if the underlying dynamics changes frequently
(e.g. LEIR) - partially observable Markov processes

• Model - based approach takes information of into account
and draws simulated samples from an internal constructed
model and updates it before acting (the agent can plan -
extended MDP - information state included)

!31

Internal model

→ ℙ

An example (1)
•Objective: reach the green squares as fast as possible

•The reward is -1 for each step! - short trajectories (sequence of states and
actions) and on the green square 0 (could loop forever).

Random policy Best policy

• Objective: Find the policy, which maximizes the (expected)
cumulative discounted reward for all states. Gt = ∑

t≥0

γtRt

!32

What is a state? What is an action? What is a trajectory?
What is Q?

What is the dynamics?
The probability to end in a state s’ after taking an action a in state s

Random policy Best policy

Best policy with wind

Dynamics different - e.g. wind

If the approach is model free - the dynamics
is not explicitly taken into account.

!33

An example (2)
ℙ

s0

s01- r00

a01

s02- r01

a02

s0

s001 - r000

a001

s002 - r001

a002

s0

s0001 - r0000

a0001

s0002 - r0001

a0002

Important terms (1)

• Ensures convergence in any case
• Gives the possibility to take

uncertainty into account - how far
can/should we look into the
future?

!34

γ ∈ [0,1]The discount factor: Gt = ∑
t≥0

γtRt

s0

s01- r00

a01

s02- r01

a02

s03- r02

a03

s0

s001 - r000

a001

s002 - r001

a002

s003 - r002

a003

s0

s0001 - r0000

a0001

s0002 - r0001

a0002

s0003 - r0002

a0003

large γ

small γ
= large uncertainty

Our operational tool set…
• The methods are implemented -

using scipy optimize
• Easy to use by everybody
• Framework easily adaptable to

other machines

!35

Single parameter constrained optimization
(Brent)

LEIR: High dimensional optimization of MTI

Further reading on scipy optimize
https://www.scipy-lectures.org/advanced/mathematical_optimization/

Projects on: https://gitlab.cern.ch/PythonicOperationSoftware

SPS: electrostatic septum-alignment

Linac3: ion source

What else can be done in this way?

• Target function can be a
function (eg. to a reference) -
or moments of a distribution

• Model free extremum
seeking stabilization

• …

!36

χ2 Energy distribution correction
in LEIR

�3 �2 �1 1 2

0.2

0.4

0.6

0.8

1

�p
p0

norm amp. (1)

What algorithms to use for optimization in
operations

The situation (measurements) is delicate due to two facts:
A. The data is noisy
B. The number of evaluations is limited

• B ⇒ Excludes highly iterative codes
(simulated annealing, genetic algorithms, differential evolution, particle
swarm…)

• A⋀B ⇒ Zero order methods

• Consequently:
• Downhill simplex method (Nelder Mead)
• Powell method
• Back up:

• Basin hopping (non convex — multiple minima)
• Brute scan - usually non feasible

!37

Enhanced Powell’s method - n dimensions

• The start is to perform a line-search (e.g. Fibonacci search) in n
linearly independent directions, taking the optimum along one
directions as starting point for the next direction.

• After n-steps a check is done if the average direction gives
improvement and is not dominated by a specific direction (avoid to
loose a specific direction) → if it is satisfied the direction of the
greatest decrease is replaced by the average direction.

• The procedure is repeated until the convergence criteria are met.

• The agent learns a part of the system response each time from
scratch.

• The start policy improved dynamically.
• A smart scanner.

!38

A constrained policy
• How to protect the hardware/how to handle constrains

(borrowed from optimization theory)?
• Barrier Methods:
• Penalize for reaching the boundary of an inequality constraint
• Penalty Methods:
• Penalize for violating a constraint — not send to HW

• How can we handle changes not affecting the
hardware?

• If changes are smaller as a specific minimum the change is not send to HW
and the change is treated as indifferent by Powell's method

• Gives also a reduction of time consumption!

!39

• Exploration/Exploitation problem: Avoid to get stuck in
a local optimum - contemporary mathematical issue…

• Q learning - off policy (we can choose the policy - still
converges):

• An action is taken with a probability randomly
- otherwise greedy (-greedy) - random selections
slowly excluded.

The ingredients in more detail (2):

!40

Qπ(S, A) ← Qπ(S, A) + α(Rt+1 + γmaxa′�Qπ(St+1, a′�) − Qπ(S, A))

TD-term
(1 − ε)

ε

The ingredients in more detail (3):
• Approximation:

• To handle the number of limited iterations: Use a
function approximator to beat “the curse of
dimensionality” - generalize!

• Q is approximated by a (d)eep (n)etwork: (D)Q(N) -
deep learning

• The TD term is used to update the network

• Stability:

• The data is correlated due to the fact that it is
generated by trajectories - stability issues

• Solution: Experienced Replay:

• The trajectory is stored and shuffled -
correlation is reduced better stability

!41

f (x1, x2, x3…, xn) = (y1, y2, y3…, ym)
≈

...

...
...

x1

x2

x3

xn

H1

Hl

y1

ym

Input
layer

Hidden
layer

Ouput
layer

→

Recap - Why a neural network? Generalization!

• Universal function approximator
theorem: Any continuous
function can be approximated
with a finite ANN with one
hidden layer using a nonlinear
activation function projection
in the vector space of nodes.

• The state space might be
intractable - we cannot visit
every state - the function is
“fitted”.

f (x1, x2, x3…, xn) = (y1, y2, y3…, ym)
≈

...

...
...

x1

x2

x3

xn

H1

Hl

y1

ym

Input
layer

Hidden
layer

Ouput
layer

A network with more than one hidden layer is called deep network

!42

The ingredients in more detail (4):

→

Back to theory: Global vs. local strategies to
find the best policy

• Finding the best global policy directly - policy
gradients:

• Monte Carlo - non biased but suffers from high
variance so requires a lot of samples.

• Not scalable + must compute V or Q for every
state (iteratively to the end).

• Challenge: sample-efficiency
• Finding the best policy iteratively temporal

difference learning:
• The Hamilton–Jacobi–Bellman equation is used

as an update. What is the problem with this?
• Biased - the estimates of estimates…
• Challenge: bias

• Alternatives: Genetic algorithms, swarm
optimization, etc…

!43

Taken from http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching_files/pg.pdf

Some words about policy gradient
• The policy is parametrized directly

and the gradient is taken as an
update:

• Challenges: High variance
• Attempts to solve this:

• Baseline - Advantage function
• Unifying TD and policy gradient -

actor-critic small bias/variance
• Used to solve continuous problems

!44

J(θ) = Eτ∼πθ
[∑

t

rt(st, at)]

∇θ J(θ) =
1
N

N

∑
i

∑
t

∇θ log πθ(si,t, ai,t)∑
t

rt(si,t, ai,t)

Taken from http://rll.berkeley.edu/deeprlcourse/
f17docs/lecture_4_policy_gradient.pdf

Taken from https://cs.wmich.edu/~trenary/files/
cs5300/RLBook/node66.html

A unified view - best of both worlds

• There is a continuum of
one step - temporal
difference (TD())
to TD() - to complete
episodes () -
Monte Carlo

• From myopic to farsighted
• To be tested to find

optimum in simple
efficiency

!45

λ

Taken from Barto and Sutton

λ = 1

λ = 0

A new forum focus the efforts on machine
learning and advanced controls is needed:

• Meeting to share experiences and get advices and
learn new technologies

• Provide a general framework to use the technology
• Centralize most popular tools as the optimizers —

some features are distributed to all applications,
some features stay individual — collecting data for
models…

• Extend the functionality of the optimizers to learn
specific task using reinforcement learning

!46

