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learning 
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Part 1
Introduction



LEIR/SPS in the CERN complex
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LEIR: first synchrotron in 
the LHC ion chain 
Ion species:  

Energy range:
Lead 54+

4.2 MeV/u − 72 MeV/u



Operating accelerators = correcting parameters

• Well established CERN approach from LHC, 
SPS,.. - work with higher level parameters and 
deterministic algorithms, models 

• Example SPS: improve transmission = reduce 
losses; e.g. reduce RMS orbit 

• Observable: 216 beam position monitors 
• Correctors: ~ 216 horizontal and vertical 

dipole corrector magnets 

• Model based optimization based - 
deterministic algorithms 

• Correction done in 2 - 3 clicks 
• MICADO, SVD,..  YASP (CERN - Yet 

Another Steering Program)
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Observable, model and correctors….

YASP



But…

Some of the accelerators and beam characteristics difficult to model 

Examples: 
• Space charge dominated beam dynamics in LINACs 
• E-cooling setting-up  
• Transmission optimization during transition crossing 
• Alignment of collimators, electrostatic septa with many degrees of 

freedom 
• … 

What can be done to avoid manual scans and trial-and-error? 
• Develop online models as much as possible 
• Advanced optimization algorithms and reinforcement learning
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Basic terminology of RL 
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An experiment - How to teach my cat 
the command “sit”?

Sit!

=

=
State (S) Take action (A) 

based on policy (p) Reward (R)

Update policy (p) 

1.

2.

Sit!

Sit!

The Reward Hypothesis: Goals and purposes  = 
maximization of expected value of the cumulative sum of 
a received scalar signal - the reward.

The cat is the agent. 



RL - mathematical formalism
• Markov decision process (MDP) of the first order:                     

Current state s completely characterizes the state of the world.                                                                                     
The world is defined by                           , which denotes the 
state-, action-, reward-spaces and the transition probabilities   , 
R is the current reward and     the discount factor.


• Objective: Find the policy, which maximizes the (expected) 
cumulative discounted reward for a given state: 

γ
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(𝒮, 𝒜, ℛ, 𝒫, γ)

Gt = ∑
t≥0

γtRt

γ ∈ [0,1]

ℙ



• The (stochastic) policy   : What is the strategy to take actions?


 


• The q function (for a given   ): How good is an action in a 
specific state following the given strategy p with respect to all 
future rewards?


• Either one tries to find a good estimate for   or for q    or for 
both…
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Important terms

qπ(s, a) = 𝔼π[Gt |St = s, At = a],

π(a |s) = ℙ[At = a |St = s]

Gt := ∑
t≥0

γtRt

π

π

π →



Part 2
Applications - optimization, reinforcement learning 
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LEIR multi-turn injection with 
stacking 
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• 6D phase space painting — limited 
diagnostics 

• E-cooling between injections to free space for 
next injection 

• Sensitive to several interdependent 
parameters (e.g. injected intensity)



Model free agent - optimization algorithms 
First test implementation 

Scenario: maximize LEIR multi-turn injected intensity by optimizing 
LEIR orbit at injection  

• Actions: trimmable high level parameters x, y, x’, y’ @ injection point 
• The state space is defined by the actions x, y, x’, y’ 

• Reward:  injected intensity

!13



The policy
• The policy of first agent: Powell optimization algorithm  

• Learns from the first few moves and estimates the best new 
action (= direction)
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Pictures taken from: http://mathfaculty.fullerton.edu/mathews/n2003/PowellMethodMod.html

Powell’s policy - take the direction of 
the average change

Classical taxi-cab policy - search along 
fixed directions (human approach)



Implementation
• Python integrated in CERN control system 

• CERN pyJAPC to interface with hardware and settings DB 
• Can optimize scalar settings as well as function settings 
• Generic, operational framework - extendable to other 

machines (within minutes…)
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The actions

The (dynamic) statistics

Action selector 
(defines order) + 
initial steps - 
import!

The algorithm selector and 
hyperparameters

The reward function 
(inclusive error)

Change the 
reward function

Reset or 
jump to max



Achievements - LEIR

!16

Courtesy: N.Biancacci

• 2018: record injected 
intensity into LEIR 
(and LHC) 

• Fast recovery after 
LEIR machine stops 
and drifts 

• Reproducible 
performance

Result LHC 2018 for LEIR extracted intensity 



Achievements - other CERN machines

Example: automatic alignment of 
electro-static septum for slow 
extraction at the SPS 

• 5 3.5 m long tanks with moveable anodes 
• 9 degrees of freedom to optimize; goal: 

minimize losses in extraction channel 
• Constrained to protect the hardware 

• Reduced alignment time from ~ 8 h 
(quasi- manual scans) to ~ 45 minutes
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Normalized losses



What’s next? 
• Successful application of Powell (and other) algorithms 

across CERN injector chain 
• Simple, noise resistant, scalable, flexible  

• “Limitation”: needs to re-learn each time    slow
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Next step:  
Reinforcement learning 

• Find the optimal policy                 

→



Reinforcement Learning - A proof 
of principle experiment (pop):
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Used to create a test case to learn to handle the algorithm, hyper-
parameters, artificial neural network architecture

• The reward: Intensity of BCT10

• The state: Position of the beam at BPM60

• The action: Change by       or hold the value of dipole BHN10±Δ

BHN10 BPM60

BCT10

Linac3

The position of the elements

LEIR
Beam

Beam

Beam
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Find the optimal policy - the approach
• Two main strategies in RL:  

• Find the policy directly (policy gradient)     computational intense - many 
iterations 

• Find the Q function iteratively and from that a better policy -> Q learning

...

...
...

x1

x2

x3

xn

H1

Hl

y1

ym

Input
layer

Hidden
layer

Ouput
layer

BHN10BCT10
BPM60

• The used algorithm: DQN learning - (Deep Q learning) 
• Guaranty: Q learning converges to the optimal policy  
• Model free approach

→



The ingredients in more detail:
• What is Q learning?

• Temporal difference (TD) iteration:


• Updating the Q - function iteratively - fast prediction 
with low number of iterations (bootstrapping) - 
online training possible


• Offline policy update rule:
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Qπ(S, A) ← Qπ(S, A) + α (
Estimate including new information

Rt+1 + γmaxa′�Qπ(St+1, a′�) − Qπ(S, A))

TD-term• Discount factor γ
α• Learn rate



Pop results(1): Initial agent training
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Training from scratch on LEIR approx. 
600-iterations  (measurement):

Apply the learned: real life test on different 
situations:recovered after a few moves

Projects on: https://gitlab.cern.ch/RL-group

• The agent was able to learn the 
task without any initial knowledge 
and applied it successfully to 
different situations  

• The drawback - large number of 
iterations
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• Number of iterations reduced due to Powell training by a factor 
of two

Pop results(2): New hybrid training

Powell - run

After training with Powell run data

Training - run after tuning with Powell

After training

Optimum Optimum
Agent takes direction

 Agent waits

Q
-value

Q
-valueRe

w
ar

d

Re
w

ar
d

BPM position BPM positionSimulated response



Pop results(3): Further tuning
• Using better parameters and deep double Q learning (DDQN) method                 
   Two independent networks to avoid a positive bias 
• Number of iterations further reduced by a factor of three
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Shuffled Powell - run

After training with Powell run data

Training - run after tuning with Powell

After training

Optimum Optimum

Agent takes direction

 Agent waits

Re
w

ar
dQ

-valueRe
w

ar
dQ

-value

BPM position BPM position



The implementation (python)
• Used library: TensorFlow with the API-KERAS 
• Democratic machine learning: open ai gym! 

• Fit into this framework to have a standard 
and learn from existing environments - 
visualization… 

• Specific RL libraries:  
• keras-rl  https://github.com/keras-rl/keras-rl 
• Advanced users: TRFL- Reinforcement 

Learning Building Blocks
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Projects on: https://gitlab.cern.ch/RL-group

https://github.com/keras-rl/keras-rl


Summary
• Started to extensively use optimization algorithms in the 

CERN injector chain in 2018 
• Mainly in LEIR, PS booster, ISOLDE, SPS 

• -> game changers for performance, ease of operation and 
reproducibility 

• Next step: reinforcement learning  
• First successful proof-of-principle test for simple 

process at LEIR injection 
• Sample efficiency is crucial, i.e. online training currently 

long 
• Operational validity of training to be studied 
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Outlook
• Collaboration with the University of Malta 
• Attack the problem of the sample efficiency - e.g. 

embedding priors about the world, e.g., intuitive 
physics  

• Develop relevant simulations - model based training 
• Upcoming tests on: 

• Linac4 
• AWAKE
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Resources

• The classic: Reinforcement Learning:          
An Introduction (Barto & Sutton 2018) 

• A more mathematically rigorous approach:      
https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf 

• Deepmind:  
       https://deepmind.com
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https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf
https://deepmind.com


Thank you for your time
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Appendices
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What means model free (in this context)?

• Model free approach: Not treated explicitly probabilities to get 
from a state s to a state s’ by taking the action a 

• Interesting if the underlying dynamics changes frequently 
(e.g. LEIR) - partially observable Markov processes 

• Model - based approach    takes information of    into account 
and draws simulated samples from an internal constructed 
model and updates it before acting (the agent can plan - 
extended MDP - information state included)
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Internal model

→ ℙ



An example (1)
•Objective: reach the green squares as fast as possible


•The reward is -1 for each step! - short trajectories (sequence of states and 
actions) and on the green square 0 (could loop forever).

Random policy Best policy

• Objective: Find the policy, which maximizes the (expected) 
cumulative discounted reward                   for all states.          Gt = ∑

t≥0

γtRt
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What is a state? What is an action? What is a trajectory? 
What is Q?



What is the dynamics?  
The probability     to end in a state s’ after taking an action a in state s

Random policy Best policy

Best policy with wind

Dynamics different - e.g. wind

If the approach is model free - the dynamics 
is not explicitly taken into account.
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An example (2)
ℙ



s0

s01- r00

a01

s02- r01

a02

s0

s001 - r000

a001

s002 - r001

a002

s0

s0001 - r0000

a0001

s0002 - r0001

a0002

Important terms (1)

• Ensures convergence in any case 
• Gives the possibility to take 

uncertainty into account - how far 
can/should we look into the 
future?
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γ ∈ [0,1]The discount factor: Gt = ∑
t≥0

γtRt

s0

s01- r00

a01

s02- r01

a02

s03- r02

a03

s0

s001 - r000

a001

s002 - r001

a002

s003 - r002

a003

s0

s0001 - r0000

a0001

s0002 - r0001

a0002

s0003 - r0002

a0003

large γ

small γ
= large uncertainty



Our operational tool set…
• The methods are implemented - 

using scipy optimize 
• Easy to use by everybody 
• Framework easily adaptable to 

other machines
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Single parameter constrained optimization 
(Brent)

LEIR: High dimensional optimization of MTI

Further reading on scipy optimize 
https://www.scipy-lectures.org/advanced/mathematical_optimization/

Projects on: https://gitlab.cern.ch/PythonicOperationSoftware

SPS: electrostatic septum-alignment 

Linac3: ion source



What else can be done in this way?

• Target function can be a     
function (eg. to a reference) -  
or moments of a distribution 

• Model free extremum 
seeking stabilization 

• …
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χ2 Energy distribution correction 
in LEIR
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What algorithms to use for optimization in 
operations

The situation (measurements) is delicate due to two facts: 
A. The data is noisy 
B. The number of evaluations is limited 

• B         ⇒ Excludes highly iterative codes                                                 
(simulated annealing, genetic algorithms, differential evolution, particle 
swarm…) 

• A⋀B    ⇒ Zero order methods 

• Consequently:  
• Downhill simplex method (Nelder Mead) 
• Powell method 
• Back up: 

• Basin hopping (non convex — multiple minima) 
• Brute scan - usually non feasible
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Enhanced Powell’s method - n dimensions

• The start is to perform a line-search (e.g. Fibonacci search) in n 
linearly independent directions, taking the optimum along one 
directions as starting point for the next direction. 

• After n-steps a check is done if the average direction gives 
improvement and is not dominated by a specific direction (avoid to 
loose a specific direction) → if it is satisfied the direction of the 
greatest decrease is replaced by the average direction. 

• The procedure is repeated until the convergence criteria are met. 

• The agent learns a part of the system response each time from 
scratch. 

• The start policy improved dynamically. 
• A smart scanner.
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A constrained policy
• How to protect the hardware/how to handle constrains 

(borrowed from optimization theory)? 
• Barrier Methods:  
•     Penalize for reaching the boundary of an inequality constraint 
• Penalty Methods:  
•     Penalize for violating a constraint — not send to HW 

• How can we handle changes not affecting the 
hardware? 

• If changes are smaller as a specific minimum the change is not send to HW 
and the change is treated as indifferent by Powell's method 

• Gives also a reduction of time consumption!
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• Exploration/Exploitation problem: Avoid to get stuck in 
a local optimum - contemporary mathematical issue…


• Q learning - off policy (we can choose the policy - still 
converges):


• An action is taken with a probability           randomly 
- otherwise greedy (  -greedy) - random selections 
slowly excluded.

The ingredients in more detail (2):
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Qπ(S, A) ← Qπ(S, A) + α(Rt+1 + γmaxa′�Qπ(St+1, a′�) − Qπ(S, A))

TD-term
(1 − ε)

ε



The ingredients in more detail (3):
• Approximation: 

• To handle the number of limited iterations: Use a 
function approximator to beat “the curse of 
dimensionality” - generalize!


• Q is approximated by a (d)eep (n)etwork: (D)Q(N) - 
deep learning


• The TD term is used to update the network


• Stability:


• The data is correlated due to the fact that it is 
generated by trajectories - stability issues 


• Solution: Experienced Replay:


• The trajectory is stored and shuffled - 
correlation is reduced     better stability
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f (x1, x2, x3…, xn) = (y1, y2, y3…, ym)
≈

...

...
...

x1

x2

x3

xn

H1

Hl

y1

ym

Input
layer

Hidden
layer

Ouput
layer

→



Recap - Why a neural network? Generalization!

• Universal function approximator 
theorem: Any continuous 
function can be approximated 
with a finite ANN with one 
hidden layer using a nonlinear 
activation function     projection 
in the vector space of nodes.


• The state space might be 
intractable - we cannot visit 
every state - the function is 
“fitted”.

f (x1, x2, x3…, xn) = (y1, y2, y3…, ym)
≈

...

...
...

x1

x2

x3

xn

H1

Hl

y1

ym

Input
layer

Hidden
layer

Ouput
layer

A network with more than one hidden layer is called deep network
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The ingredients in more detail (4):

→



Back to theory: Global vs. local strategies to 
find the best policy

• Finding the best global policy directly -  policy 
gradients: 

• Monte Carlo - non biased but suffers from high 
variance so requires a lot of samples. 

• Not scalable + must compute V or Q for every 
state (iteratively to the end). 

• Challenge: sample-efficiency  
• Finding the best policy iteratively temporal 

difference learning: 
• The Hamilton–Jacobi–Bellman equation is used 

as an update. What is the problem with this?  
• Biased -  the estimates of estimates… 
• Challenge: bias 

• Alternatives: Genetic algorithms, swarm 
optimization, etc…
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Taken from http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching_files/pg.pdf



Some words about policy gradient
• The policy is parametrized directly 

and the gradient is taken as an 
update: 

• Challenges: High variance 
• Attempts to solve this: 

• Baseline - Advantage function  
• Unifying TD and policy gradient - 

actor-critic small bias/variance 
• Used to solve continuous problems 
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J(θ) = Eτ∼πθ
[∑

t

rt(st, at)]

∇θ J(θ) =
1
N

N

∑
i

∑
t

∇θ log πθ(si,t, ai,t)∑
t

rt(si,t, ai,t)

Taken from http://rll.berkeley.edu/deeprlcourse/
f17docs/lecture_4_policy_gradient.pdf

Taken from https://cs.wmich.edu/~trenary/files/
cs5300/RLBook/node66.html



A unified view - best of both worlds

• There is a continuum of 
one step - temporal 
difference (TD(            )) 
to TD(   ) - to complete 
episodes (            ) - 
Monte Carlo 

• From myopic to farsighted 
• To be tested to find 

optimum in simple 
efficiency
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λ

Taken from Barto and Sutton

λ = 1

λ = 0



A new forum focus the efforts on machine 
learning and advanced controls is needed:

• Meeting to share experiences and get advices and 
learn new technologies 

• Provide a general framework to use the technology 
• Centralize most popular tools as the optimizers — 

some features are distributed to all applications, 
some features stay individual — collecting data for 
models… 

• Extend the functionality of the optimizers to learn 
specific task using reinforcement learning
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