

Machine Learning and **Tuning of the CLIC Final Focus System**

2nd ICFA Workshop on Machine Learning for Charged Particle Accelerators, February 27, 2019, Villigen, PSI.

> Acknowledgements: Chetan Gohil, Ryan Bodenstein, Andrea Latina, Daniel Schulte

Jim Ogren

Compact Linear Collider (CLIC)

The beam delivery system - Last 2.2 km of the main linacs

- Collimation section
- Final-focus system

The 380 GeV CLIC FFS

The final-focus system (FFS):

- Local chromaticity scheme
- 780 m total length
- 20 quadrupole magnets
- 22 Beam-position monitors (BPMs)
- 6 sextupole magnets
- 2 octupole magnets

	—
Norm. emittance (end of linac) $\gamma \epsilon_x / \gamma \epsilon_y$	[nm]
Norm. emittance (IP) $\gamma \epsilon_x / \gamma \epsilon_y$	[nm]
Beta function (IP) β_x^* / β_y^*	[mm]
Target IP beam size σ_x^* / σ_y^*	[nm]
Bunch length σ_z	$[\mu m]$
rms energy spread δ_p	[%]
Bunch population N_e	$[10^9]$
Number of bunches $n_{\rm b}$	
Repetition rate $f_{\rm rep}$	[Hz]
Luminosity $\mathcal{L}_{\text{total}}$	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$
Peak luminosity $\mathcal{L}_{1\%}$	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$

Jim Ögren

ICFA Workshop on MLCPA - February 2019

Luminosity calculation:

- N =particles per bunch
- n_b = number of bunches
- f_r = repetition rate
- σ = beam size at collision point
- H = correction factor (hour glass effect, disruption)

$$L = H \frac{N^2 n_b f_r}{\sigma_x \sigma_y}$$

Tuning of the Final focus system

- Tuning = reaching performance for a machine with imperfections
 - Studied extensively for CLIC and other linear colliders
- The challenge
 - Complicated, interleaved system with many effects
 - Simulations are computationally heavy -
- Our simulation setup
 - Tracking code: PLACET (has Python interface)
 - Beam-beam code: GUINEA-PIG for computing the luminosity
- First objective
 - A machine learning model for speeding up simulations

Single-beam static tuning simulations

- Single-beam: only half of FFS, beam mirrored at IP
- Static imperfections: transverse misalignments, rolls and magnetic strength errors
- Monte Carlo simulations. Tuning goal: 90% of machines successfully tuned
- Tuning time is essential for collider performance

J. Ogren, A. Latina, R. Tomas and D. Schulte, *Tuning of the CLIC 380 GeV Final-Focus* System with Static Imperfections, CERN-ACC-2018-0055, CLIC-Note-1141.

Jim Ögren

extupoles uning uning uning	Static imperfections	Specified tolerance (rms error)	Elements
	Resolution	20 nm	BPMs
	Transverse misalignments	10 µm	BPMs, quadrupo multipoles
	Roll errors	100 µrad	BPMs, quadrupo multipoles
_	Relative strength error	10-4	Quadrupoles, mult

Understanding tuned machines

- ML to categorize features of tuned machines
- Feature selection: try to determine which imperfections that are more relevant
- 5 categories: correctors, quadrupoles, multipoles, bends, quadupoles & multipoles
- Limited data set (100 cases)
- Ongoing work

Different approach: focus on a subset of possible imperfections

Previous work: ML and CLIC 3 TeV

For more information:

ML Modeling	g of Luminosi	ity for FFS Tun		
<u>Edu Marin</u> *1	Rogelio Tomas ²	Gianluca Valentino		
¹ CELLS, Barcelona, (SPAIN) ² CERN, Switzerland ³ University of Malta, Malta				
January 21 st , 2019				
CLIC V	Veek 2019 - Accele	erator Session		
ALBA	CERN			

Sextupole offsets

- Sextupole transverse offsets Big impact on luminosity
- Different approaches
 - Orthogonal knobs
 - Random walk
- Efficient tuning is crucial
- Make use of Machine Learning?

Sextupole surrogate model • Train a model that can map sextupole transverse positions to Luminosity

- Goal: to have a fast estimator

Jim Ögren

Data generation

- Simulate perfect machine with sextupole transverse offsets (5, 10, 20 µm rms)
- 1 run = 10 random cases (less then 20 mins)10,000 jobs at the time
- Generated about 650,000 data points

Machine Learning:

- Deep artificial neural networks
- TensorFlow with Python interface Keras

Model performance

	Luminosity			Vertical beam size		
	2 Layers	5 Layers	7 Layers	2 Layers	5 Layers	7 Layers
Mean(Rel_error) [%]	8.1	2.2	2.3	6.8	1.6	1.4
Max(Rel_error) [%]	120	20	23	115	29	38
90% less than [%]	18.9	4.7	5.0	15.1	2.5	3.3

- It seems difficult to get the mean error below 2-3% \bullet
- Part of it comes from Luminosity uncertainty (~1%)
- Accuracy is not the most crucial aspect
- A model that correctly characterizes the behavior is very useful...

Jim Ögren

Compare with full simulation

Simulation

- Tuning of the perfect machine with sextupole transverse offsets only
- Use the normal tuning knobs and full-scale tracking (100,000 macroparticles)
- At each step: evaluate luminosity from ML model as well and save to file
- Example: mean(rel_error) ~1%

Compare with full simulation

- Not always good agreement
- Sometimes the sextupole knobs tune towards large offsets
- Outside of reliable range of ML model

Compare with full simulation

- Not always good agreement
- Sometimes the sextupole knobs tune towards large offsets
- Outside of reliable range of ML model

Improvement of knobs

- Method designed using ML model
- Avoid large offsets
- Better agreement with ML model

11/17

Random walk algorithm

- ML model: 1000 iteration random walk tuning takes a few seconds
- Full-scale simulation: 1000 iterations random walk tuning takes ~8h
- Use ML model to optimize algorithm
- For each setting: 100 different random seeds, each tuned 100 times
- Random walk:
 - * Select a subset out of the 12 DOF
 - Make steps in random direction: gain*[-1, -0.5, 0.5, 1] *

Random walk algorithm - full simulation

Jim Ögren

ICFA Workshop on MLCPA - February 2019

Gain = 1 and 2 fastest

- Subset = 10 slightly better than subset = 2
- Subset = 12 did not converge in 2000 iterations

Sextupole and quadrupole offsets

- Include transverse offsets on sextupoles (12) and quadrupoles (20)
- Number of inputs: **52**

Data generation

- Simulate perfect machine with sextupole and quadrupole transverse offsets
- Generated about 480,000 data points

Model

- Difficult to train model
- Cut data: $L < 10^{31} \text{ cm}^{-2}\text{s}^{-1}$
- Small range

14/17

Sextupole and quadrupole tuning?

- First attempt of random walk tuning moving quadrupoles and sextupoles
- Previously: BBA separately from sextupole tuning

- Not so robust yet
- Fine-tune algorithm (adjust step size)

ing quadrupoles and sextupoles le tuning

Sextupole and quadrupole tuning?

- First attempt of random walk tuning moving quadrupoles and sextupoles
- Previously: BBA separately from sextupole tuning

- Not so robust yet
- Fine-tune algorithm (adjust step size)

Sextupole and quadrupole tuning?

- First attempt of random walk tuning moving quadrupoles and sextupoles
- Previously: BBA separately from sextupole tuning

- Not so robust yet
- Fine-tune algorithm (adjust step size)

ML model needs improvement

ICFA Workshop on MLCPA - February 2019

15/17

Summary

- Tuning is crucial for a linear collider final-focus system interesting problem
- Neural networks to act as surrogate models for CLIC 380 GeV FFS
- Fast simulations testing of algorithms. Ex: optimizing random walk
- Also implemented a model including quadrupole offsets

Summary

- Tuning is crucial for a linear collider final-focus system interesting problem
- Neural networks to act as surrogate models for CLIC 380 GeV FFS
- Fast simulations testing of algorithms. Ex: optimizing random walk
- Also implemented a model including quadrupole offsets

Outlook

- Extend model to include more imperfections
- Improve on models: do we need more data or more knowledge?
- Can we gain more knowledge from the models themselves?
- Solving the inverse problem?
- ML techniques for the tuning itself?
- Reinforcement learning? Other techniques?
- Related topics: luminosity estimate from other beam-beam signals?

Jim Ögren

Thank you!

ICFA Workshop on MLCPA - February 2019

Backup slides


```
import tensorflow as tf
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(12, activation='relu', input_shape=(x.shape[1],)))
model.add(tf.keras.layers.Dense(12, activation='relu'))
model.add(tf.keras.layers.Dense(12, activation='relu'))
model.add(tf.keras.layers.Dense(12, activation='relu'))
model.add(tf.keras.layers.Dense(12, activation='relu'))
model.add(tf.keras.layers.Dense(4))
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
history=model.fit(x, y, epochs=400, batch_size=50, validation_split=0.1)
```

```
import tensorflow as tf
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(52, activation='relu', input_shape=(x.shape[1],)))
model.add(tf.keras.layers.Dense(52, activation='relu'))
model.add(tf.keras.layers.Dense(52, activation='relu'))
model.add(tf.keras.layers.Dense(52, activation='relu'))
model.add(tf.keras.layers.Dense(52, activation='relu'))
model.add(tf.keras.layers.Dense(26, activation='relu'))
model.add(tf.keras.layers.Dense(26, activation='relu'))
model.add(tf.keras.layers.Dense(26, activation='relu'))
model.add(tf.keras.layers.Dense(1))
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
model.fit(x, y, epochs=1000, batch_size=50, validation_split=0.1)
```

Jim Ögren

ICFA Workshop on MLCPA - February 2019

19/17

ICFA Workshop on MLCPA - February 2019

Training history - Sextupole model, 5 Layers

Sextupole knobs

- Transverse movement of sextupoles
- The response matrix of 2nd order moments - SVD to find orthogonal 'knobs' (vectors from matrix V)

- Each knob is scanned over some range and luminosity is maximized
- Similarly for the octupoles

••	$\frac{\partial \sigma_{xx}}{\partial X_6}$	$\frac{\partial \sigma_{xx}}{\partial Y_1}$	•••	$\frac{\partial \sigma_{xx}}{\partial Y_6}$
••	$\frac{\partial \sigma_{xx'}}{\partial X_6}$	$\frac{\partial \sigma_{xx'}}{\partial Y_1}$	• • •	$\frac{\partial \sigma_{xx'}}{\partial Y_6}$
••	•	•	•••	÷
••	$\frac{\partial \sigma_{zz}}{\partial X_6}$	$\frac{\partial \sigma_{zz}}{\partial Y_1}$	•••	$\frac{\partial \sigma_{zz}}{\partial Y_6}$

