Machine Learning Optimizing beam lifetimes in the LHC

Speaker: Loïc COYLE T. Pieloni (EPFL-LPAP) and B. Salvachua (LHC-Operation) Acknowledgement : LHC OP, G. Azzopardi, M. Schenk, T. Tydecks

Context

Acceleration 450 GeV $\rightarrow 6.5 \text{ TeV}$

Motivation

Unexplained losses at different stages of the cycle

Help to shed light on the impact of parameters on the proton losses

Help optimize and determine operational setups

Goal:

First trial of using machine learning surrogate models for LHC optimization

Try to predict from initial setting the beam lifetimes over a physical cycle to perhaps feedback online corrections to optimize it.

For use in collider optimization \rightarrow maximising integrated luminosity reach and reducing proton losses

Improve the understanding of proton losses to feed to numerical models for future projects studies

Framing the problem

Reinforcement learning not really feasible

Simulation:

- Particle tracking simulations extremely expensive
- Simulations have trouble with modelling coherent instabilities

Online optimization (BO) not feasible either

→ Data driven supervised learning surrogate model

Surrogate model of the beams' intensity lifetime

Dataset:

- Tunes H/V/B1/B2
- Chromaticity H/V/B1/B2
- Octupole magnet current B1/B2

The operational knobs of the machine

Target: Lifetimes B1/B2

Time span:

- 01-01 to 12-31 2017
- 01-01 to 11-01 2018

Dataset size: ~50000 points

Data Visualized

Spearman correlation coefficient: Measure of 'fitting' with monotonous function.

- H tunes of B1 & B2
- Sextupole currents

Lifetime B1 as correlated with B2 measurements then with B1 ? Cross beam dependence.

。5

Some surprises...

Unexpected loss of correlations with tunes

Systematic under evaluation of the tune. Preprocessing of measured data fundamental

BLMEI.06L7 B1E10 TCHSH.6L7.B1:LOSS RS09 BLMEI.06R7.B2110 TCHSH.6R7.B2:LOSS RS09 BLMTI.06L3.B1I10 TCP.6L3.B1:LOSS RS09 BLMTI.06R3.B2E10 TCP.0R3.B2:LOSS RS09 LHC.BCTFR.A6R4.B1:BEAM_INTENSITY LHC.BCTFR.A6R4.B2:BEAM INTENSITY LHC.BLM.LIFETIME:B1 BEAM LIFETIME LHC.BLM.LIFETIME:B2 BEAM LIFETIME LHC.BOBBO.CONTINUOUS.B1:TUNE H LHC.BQBBQ.CONTINUOUS.B1:TUNE V LHC.BQBBQ.CONTINUOUS.B2:TUNE H LHC.BQBBQ.CONTINUOUS.B2:TUNE_V LHC.STATS:B1_NUMBER_BUNCHES LHC.STATS:B2 NUMBER BUNCHES Mean pos H B1 Mean pos H B2 Mean pos V B1 Mean pos V B2 RPMBB.RR13.ROF.A81B1:I_MEAS RPMBB.RR13.ROF.A81B2:I MEAS RPMBB.UA23.RSD1.A12B1:I MEAS RPMBB.UA23.RSD1.A12B2:I MEAS RPMBB.UA23.RSF1.A12B1:I MEAS RPMBB.UA23.RSF1.A12B2:I MEAS timestamps B1 emith avg B1 emity avg B2 emith avg B2 emity avg HeatLoad Sum

6

-1.00

Choosing the model

Madal	Beam 1		
WOUEI	R-2	MSE	
Linear	0.666	9482.435)
Ridge	0.664	9521.182	
Lasso	0.655	9773.588	ſ
ElasticNet	0.141	24376.165	J
Multi-Layer Perceptron	0.833	4856.423	
RandomForest	0.996	101.971	l
GB Decision Trees	0.997	76.577	ſ

Linear models :

Determine the ϖ coefficients which minimise :

$$\min_{w} ||X\omega - y||_2^2.$$

With varying degrees of regularization

http://scikit-learn.org/stable/modules/linear_model.html

Fully connected neural network

http://scikit-learn.org/stable/modules/neural_networks_supervised.html

Decision Tree based methods

GBDT from https://github.com/Microsoft/LightGBM

Gradient Boosted Decision Trees

outlook	temp.	humidity	windy	time
rainy	hot	high	false	25
rainy	hot	high	true	30
overcast	hot	high	false	46
sunny	mild	high	false	45
sunny	cool	normal	false	52
sunny	cool	normal	true	23
overcast	cool	normal	true	43
rainy	mild	high	false	35
rainy	cool	normal	false	38
sunny	mild	normal	false	46
rainy	mild	normal	true	48
overcast	mild	high	true	52
overcast	hot	normal	false	44
sunny	mild	high	true	30

Available implementations: https://github.com/Microsoft/LightGBM https://github.com/dmlc/xgboost

Consistently in the top ~% of kaggle competitions

Model Performance

Performance of trained model on **unseen data**.

Model can accurately predict the value of lifetime.

Presence of a few outliers

Same for beam 2

Robustness of model ?

2017 model on 2018 data

Current trained sample with 2017 data cannot fully predict 2018 lifetimes:

- Missing parameters that will describe better the data
- Retrain every year ? for how long ? dedicated data ?

2018 model

Same model trained on 2018 data. Using bootstrapping to get an approximation of the 95% confidence interval.

 \rightarrow trained 100s of models on slightly different datasets \rightarrow percentile of each prediction points

Performance of model on test set beam 1

Feature importance: number of times the splits in the decision trees occur on each feature Correlation with tunes from both beams ? Strong dependence on time ?

Dedicated experiment

Generation and control of trim sequences :

- Random tune trims around +/- 0.01 of the nominal injection tunes.
- The path of the trims was optimized to avoid far jumps crossing many lines.
- We move from one point to the other, both beams and H/V changed at the same time
- Scans repeated with different machine settings i.e. octupole/sextupole currents...
- Different scans for both beams and H/V planes to avoid fake cross correlations

MD data

Lost most of the cross beam dependence as both beams were scanned independently.

Very different correlations for both beams.

Beam 1 trade off with emittance

Experimental data Main trends

For the second trim sequence :

Tunes close to resonance, small $\Delta Q \rightarrow$ High lifetimes and emittance increase.

Multi-objective optimization problem

Determining the pareto optimal settings from the MD model.

NSGAII multi-objective optimization \rightarrow lifetime/emittance trade off

Emittance H/V ~ linear

Recommended settings vs data

Model: Gaussian Process B1

Multiple output:

Lifetime & emittances

Recommended settings:

• $Q_h = 0.279$ • $Q_V = 0.286$ Seems to agree tentatively with MD data.

Example fill: 7056

Predicted and measured lifetime B2 evolution.

Optimization beam 2 tunes, prediction of beam 2 lifetimes.

Recommended settings:

•
$$Q_{h} = 0.283$$

•
$$Q_V = 0.289$$

Recommended settings vs data

Model: Gaussian Process B2

Multiple output:

Lifetime & emittances

Recommended settings:

• $Q_h = 0.283$ • $Q_V = 0.289$ Seems to agree tentatively with MD data.

Simulations

Using simulation to understand the validity of "optimized" working point.

Long term particle tracking with Sixtrack

Extension to machine learning :

- Use simulations to produce additional machine learning dataset.
- Can explore at will input parameter space

Trained model could be used instead of time consuming tracking simulations.

Simulations

Using simulation to understand the validity of "optimized" working point. Long term particle tracking with Sixtrack

Extension to machine learning :

- Use simulations to produce additional machine learning dataset.
- Can explore at will input parameter space

Trained model could be used instead of time consuming tracking simulations.

Conclusion

- Model successfully learns the expected trends
- Preprocessing and quality of data is crucial
- Interesting results:
 - Difference of tune measurement devices
 - Proof of concept of fill optimization \rightarrow a recommended set of parameters to improve lifetimes
 - Dependency with time elapsed under investigation \rightarrow missing variables ?
- Numerical models to support observations have been set-up
- $MD \rightarrow high quality data$
- Multi output modeling \rightarrow preliminary multi objective optimization

Outlook

- Multi-Objective lifetime/emittance model
- Larger dataset, introduce parameters at the bunch level, larger ranges of parameters must be explored (operation & MD ?)
- Improve the diagnostic of the system and the pre-processing of the available data: many quantities need to be introduced
- Go beyond just PRERAMP
- Define an "online" use to help operators with operational choices