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Machine Learning 
Optimizing beam lifetimes in 

the LHC
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Context
Acceleration 450 GeV → 6.5 TeV

Beam mode : PRERAMP
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Motivation
Unexplained losses at different stages of the cycle

Help to shed light on the impact of parameters on the proton losses

Help optimize and determine operational setups

Goal:

First trial of using machine learning surrogate models for LHC optimization

Try to predict from initial setting the beam lifetimes over a physical cycle to perhaps feedback online 
corrections to optimize it.

For use in collider optimization → maximising integrated luminosity reach and reducing proton losses

Improve the understanding of proton losses to feed to numerical models for future projects studies



Framing the problem
Reinforcement learning not really feasible

Simulation:

● Particle tracking simulations extremely expensive
● Simulations have trouble with modelling coherent 

instabilities

Online optimization (BO) not feasible either

→ Data driven supervised learning surrogate model
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Surrogate model of the beams’ 
intensity lifetime

Dataset:
● Tunes H/V/B1/B2
● Chromaticity H/V/B1/B2
● Octupole magnet current B1/B2

The operational knobs of the machine

Target: Lifetimes B1/B2

Time span: 

● 01-01 to 12-31 2017
● 01-01 to 11-01 2018

Dataset size: ~50000 points



Data Visualized
Spearman correlation coefficient:
Measure of ‘fitting’ with monotonous  function.

● H tunes of B1 & B2
● Sextupole currents

Lifetime B1 as correlated with B2 measurements then 
with B1 ? Cross beam dependence.
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Some surprises...
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Unexpected loss of correlations with 
tunes

Systematic under evaluation of the tune. 
Preprocessing  of measured data 
fundamental



Choosing the model
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Model
Beam 1

R-2 MSE

Linear 0.666 9482.435

Ridge 0.664 9521.182

Lasso 0.655 9773.588

ElasticNet 0.141 24376.165

Multi-Layer 
Perceptron

0.833 4856.423

RandomForest 0.996 101.971

GB Decision Trees 0.997 76.577

Linear models : 
Determine the ɷ coefficients which minimise :

 With varying degrees of regularization

http://scikit-learn.org/stable/modules/linear_model.html

Fully connected neural network
http://scikit-learn.org/stable/modules/neural_networks_supervised.html

Decision Tree based methods

GBDT from https://github.com/Microsoft/LightGBM  



Prediction 
Errors

Prediction 
Errors

Train

Gradient Boosted Decision Trees
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Prediction 
Errors Train

...

Available implementations:
https://github.com/Microsoft/LightGBM
https://github.com/dmlc/xgboost

Consistently in the top ~% of kaggle competitions 

https://github.com/Microsoft/LightGBM
https://github.com/dmlc/xgboost


Model Performance
Performance of trained model on 
unseen data.

Model can accurately predict the 
value of lifetime. 

Presence of a few outliers

Same for beam 2

Robustness of model ?
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2017 model on 2018 data
Current trained sample with 2017 data cannot fully predict 2018 lifetimes:

- Missing parameters that will describe better the data
- Retrain every year ? for how long ? dedicated data ?



2018 model
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Same model trained on 2018 data.
Using bootstrapping to get an approximation of 
the 95% confidence interval.
→ trained 100s of models on slightly different 
datasets → percentile of each prediction points

Feature importance: number of 
times the splits in the decision trees 
occur on each feature
Correlation with tunes from both 
beams ?
Strong dependence on time ?



Proof of concept : surrogate model for optimization

Example fill: 7056

Predicted and measured 
lifetime B1 evolution.

Prediction is slightly off 
towards the end but correct 
trends.
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Proof of concept : surrogate model for optimization
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Optimization beam 1 tunes, 
prediction of beam 1 
lifetimes.

Very erratic evolution of 
parameters. Not feasible.

Large lifetime gain early on 
tapers off during the fill

To be taken with a grain of 
salt



Proof of concept : surrogate model for optimization
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Optimization beam 1 tunes, 
prediction of beam 1 
lifetimes.

Find the best beam 1 tune 
trim i.e. constant value.

More realistic optimized 
lifetimes.

Recommended settings:
● Qh = 0.279
● QV = 0.286



 Dedicated experiment
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Generation and control of trim sequences :

● Random tune trims around +/- 0.01 of the 
nominal injection tunes.

● The path of the trims was optimized to 
avoid far jumps crossing many lines. 

● We move from one point to the other, both 
beams and H/V changed at the same time

● Scans repeated with different machine 
settings i.e. octupole/sextupole currents...

● Different scans for both beams and H/V 
planes to avoid fake cross correlations



MD data
Lost most of the cross beam 
dependence as both beams were 
scanned independently.

Very different correlations for both 
beams.

Beam 1 trade off with emittance
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Experimental data 
Main trends
For the second trim sequence :

Tunes close to resonance, small 
ΔQ → High lifetimes and emittance 
increase.

Multi-objective optimization 
problem 
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Modeling with experiment data

Determining the pareto optimal 
settings from the MD model.

NSGAII multi-objective optimization 
→ lifetime/emittance trade off

Emittance H/V ~ linear



Recommended settings vs data
Model: Gaussian Process B1

Multiple output:

Lifetime & emittances

Recommended settings:

● Qh = 0.279
● QV = 0.286

Seems to agree tentatively 
with MD data.
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Proof of concept : surrogate model for optimization

Example fill: 7056

Predicted and measured 
lifetime B2 evolution.
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BEAM 2



Proof of concept : surrogate model for optimization
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Optimization beam 2 tunes, 
prediction of beam 2 
lifetimes.

Recommended settings:
● Qh = 0.283            
● QV = 0.289

BEAM 2



Model: Gaussian Process B2

Multiple output:

Lifetime & emittances

Recommended settings:

● Qh = 0.283            
● QV = 0.289

Seems to agree tentatively with 
MD data.
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BEAM 2

Recommended settings vs data
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Simulations
Using simulation to understand the validity of “optimized” working point.

Long term particle tracking with Sixtrack
Extension to machine learning :
● Use simulations to produce 

additional machine learning 
dataset.

● Can explore at will input parameter 
space

Trained model could be used instead of 
time consuming tracking simulations.
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Simulations
Using simulation to understand the validity of “optimized” working point.
Long term particle tracking with Sixtrack

Extension to machine learning :
● Use simulations to produce 

additional machine learning 
dataset.

● Can explore at will input parameter 
space

Trained model could be used instead of 
time consuming tracking simulations.



Conclusion
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● Model successfully learns the expected trends
● Preprocessing and quality of data is crucial
● Interesting results:

○ Difference of tune measurement devices 
○ Proof of concept of fill optimization → a recommended set of parameters to improve lifetimes
○ Dependency with time elapsed under investigation → missing variables ?

● Numerical models to support observations have been set-up
● MD → high quality data 
● Multi output modeling → preliminary multi objective optimization 

Outlook
● Multi-Objective lifetime/emittance model
● Larger dataset, introduce parameters at the bunch level, larger ranges of parameters must be explored 

(operation & MD ?)
● Improve the diagnostic of the system and the pre-processing of the available data: many quantities 

need to be introduced
● Go beyond just PRERAMP
● Define an “online” use to help operators with operational choices 
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