Methods for Data Cleaning

Jonathan Edelen, Auralee Edelen, & Dean Edstrom

presented at the 2nd ICFA Beam Dynamics Mini-Workshop: Machine Learning Applications for Particle Accelerators, PSI (Simulations and Modeling) 28 February 2019

- What is data-cleaning?
 - Removing un-wanted or erroneous data from large training datasets
 - Identifying inconstancies in across large datasets that span different runs

- What is data-cleaning?
 - Removing un-wanted or erroneous data from large training datasets
 - Identifying inconstancies in across large datasets that span different runs
- Why do we want to clean our data? Errors in training datasets can
 - propagate into models
 - increase model complexity
 - slow down the learning process

- What is data-cleaning?
 - Removing un-wanted or erroneous data from large training datasets
 - Identifying inconstancies in across large datasets that span different runs
- Why do we want to clean our data? Errors in training datasets can
 - propagate into models
 - increase model complexity
 - slow down the learning process
- Where do these errors come from?
 - Simulation runs terminate unexpectedly
 - Machine calibration errors
 - Uncharacterized drift

- What is data-cleaning?
 - Removing un-wanted or erroneous data from large training datasets
 - Identifying inconstancies in across large datasets that span different runs
- Why do we want to clean our data? Errors in training datasets can
 - propagate into models
 - increase model complexity
 - slow down the learning process
- Where do these errors come from?
 - Simulation runs terminate unexpectedly
 - Machine calibration errors
 - Uncharacterized drift
- Why automate this process?
 - Manual data cleaning is time consuming!

\land radiasoft

Objective

- Explore the use of unsupervised learning for automatic data cleaning using case studies:
 - Start simple
 - Batch simulation scans of the FAST LINAC
 - Increase complexity:
 - Classification of machine drift at FAST
 - Multi-slit emittance measurements
 - Temperature-frequency data from a high power RFQ

Overview of methods used

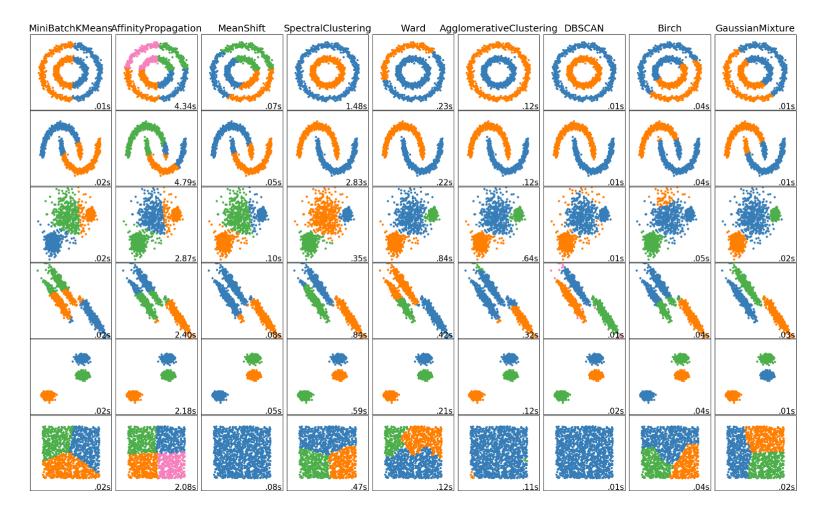
- Unsupervised learning
 - DB-Scan
 - Well suited for clusters of uniform density and odd shape
 - Gaussian Mixture Modeling
 - Well suited for clusters with a Gaussian distribution
 - K-means
 - Well suited for clusters that are uniformly distributed from a center
 - Agglomerative Clustering
 - Aggregating tiny clusters rather than dividing large clusters

Overview of methods used

- Unsupervised learning
 - DB-Scan
 - Well suited for clusters of uniform density and odd shape
 - Gaussian Mixture Modeling
 - Well suited for clusters with a Gaussian distribution
 - K-means
 - Well suited for clusters that are uniformly distributed from a center
 - Agglomerative Clustering
 - Aggregating tiny clusters rather than dividing large clusters

- Physics based clustering
 - Smoothness
 - Continuity
 - First order smoothness
 - Etc.

Clustering resource aside



https://towardsdatascience.com/the-5-clustering-algorithms-data-scientistsneed-to-know-a36d136ef68

Smoothness tests

• Principle:

 Parameter scans in simulation should produce smooth functions for bulk parameters (for the FAST LINAC this is the case)

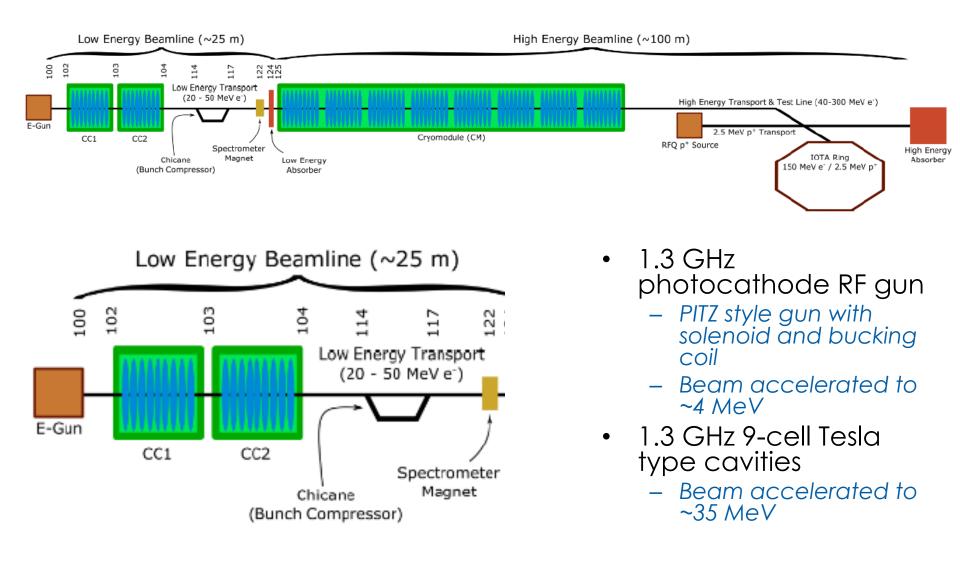
Smoothness tests

- Principle:
 - Parameter scans in simulation should produce smooth functions for bulk parameters (for the FAST LINAC this is the case)
- How do we determine if a discrete dataset is continuous?
 - Define a metric for the data: There exists some i and j such that this condition is satisfied $\sqrt{(x_i x_j)^2 + (y_i y_j)^2} < m$
 - Violations are discontinuities

Smoothness tests

- Principle:
 - Parameter scans in simulation should produce smooth functions for bulk parameters (for the FAST LINAC this is the case)
- How do we determine if a discrete dataset is continuous?
 - Define a metric for the data: There exists some i and j such that this condition is satisfied $\sqrt{(x_i x_j)^2 + (y_i y_j)^2} < m$
 - Violations are discontinuities
- What about smoothness?
 - Compute derivatives and use above criteria to evaluate if derivatives are continuous

Overview of the FAST Linac

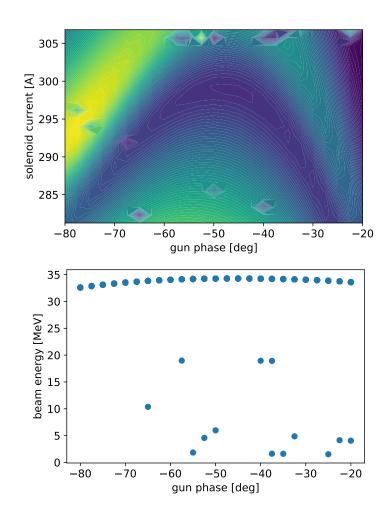


Simulation data from the FAST LINAC

- 2-D scan of gun-phase and solenoid strength
 - Run on high performance computing, (Linux cluster with 100 cores)
 - Some simulations terminated unexpectedly
 - Remove unwanted data from dataset
- Energy is the cleanest indicator of good vs. bad

radiasoft

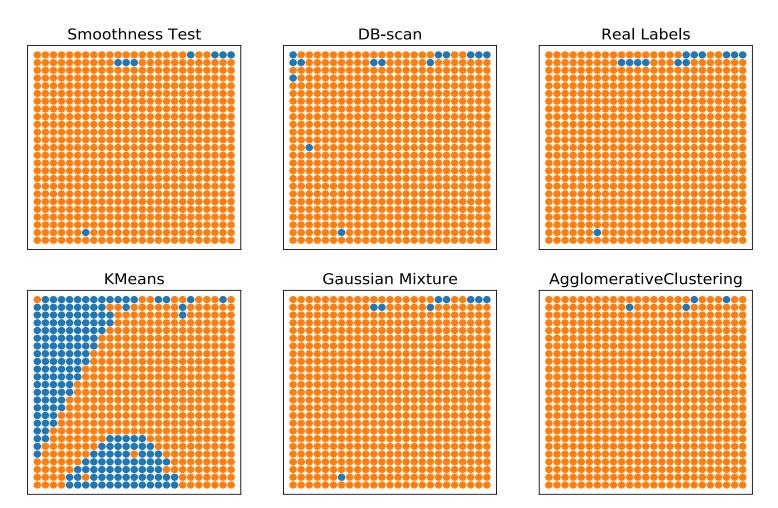
 Use this to label dataset but exclude from clustering analysis



Choosing hyper-parameters

- Training procedures:
 - DB-scan
 - minimize the distance and number of points while keeping only two clusters
 - Gaussian Mixture Modeling
 - choose 2 clusters to start
 - K-means
 - choose 2 clusters to start
 - Agglomerative Clustering
 - choose 2 clusters to start
 - Continuity clustering
 - scan the metric and choose knee in curve of number of discontinuities vs metric size

Initial results



Orange: Identified good run Blue: Identified bad run

Initial results

	K-means	DB-Scan	Gaussian Mix	Agglo	Smoothness
Percentage Correct	67.2%	98.6%	99.4%	98.6%	99.2%
Correctly Identified Bad Runs	3/13	9/13	9/13	4/13	8/13
False Positive	10/13	4/13	4/13	9/13	5/13
False Negative	195/612	5/612	0/612	0/612	0/612

False Positive: Predicted to be good but are actually bad. False Negative: Predicted to be bad but are actually good

- DB-Scan/Gaussian Mixture/Smoothness have similar performance
- K-means and Agglomerative are both poor performers
- Gaussian mixture is a very good option for this dataset as specification of hyper-parameters is easiest and zero false positives

🙈 radiasoft

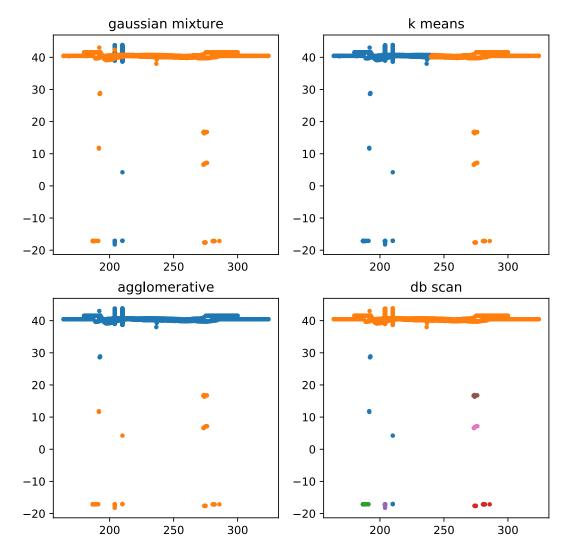
Work in progress: Identifying machine drift

- Can we identify drift in RF calibrations?
 - Using Energy Measurements
 - Using BPM Data
- Case study:
 - FAST emittance measurement studies
 - Data collected during 3 separate studies spanning a 4 month period
 - November 2018, Dec 2018, and Feb 2019
- Using different clustering algorithms
 - Apply clustering to remove bad data
 - Apply clustering to identify calibration drifts

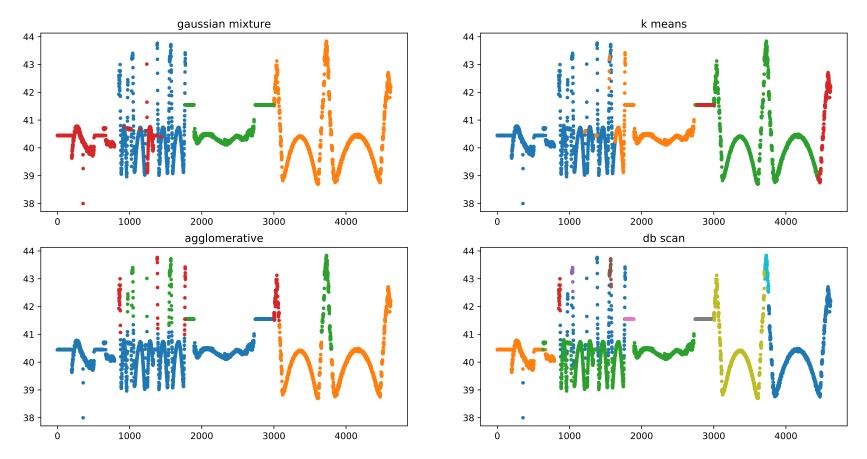
🙈 radiasoft

Initial data cleaning

- Four different clustering methods applied
 - K-means was the only one that really failed
 - Both Gaussian mixture and agglomerative have some sub-optimal behavior
 - DB Scan is the most "correct"
- Horizontal axis: gun phase
- Vertical axis: beam energy



Identifying RF Calibration Drift



• We know there was drift from early in the run to the end of the run. The question we want to answer is, is it possible for a clustering algorithm to detect this drift automatically.

A radiasoft

Conclusions and Next Steps

- Conclusions:
 - DB-Scan is relatively effective for cleaning data and has good hyper parameter tuning heuristics
 - Agglomerative methods are effective for large outliers in machine data without hyper parameter tuning
- Future efforts:
 - Continue to work on more complicated machine and simulation data
 - Attempt to generalize procedure for automated data cleaning
 - Explore other clustering algorithms or anomaly detection methods

