PAUL SCHERRER INSTITUT

Matthias Muntwiler :: Beamline Scientist :: Paul Scherrer Institut

PEARL – Photo-Emission and Atomic Resolution Laboratory

- current status
- scientific case
- instrumental upgrades
- beamline concept for SLS 2.0
- conclusions

PEARL – surface science at the synchrotron

Photo-Emission and Atomic Resolution Laboratory

surface science	soft x-ray photoelectron spectroscopy & diffraction	scanning tunnelling microscopy
nano-structured surfaces 2D materials/ultrathin films molecular networks magnetic molecules on-surface chemistry surfaces of novel materials (topological, multiferroic,)	high-resolution XPS angle scanned (XPD) photon energy-scanned (PhD) resonant excitation X-ray spectroscopy (XAS/NEXAFS/XMCD)	topography atomic resolution dI/dV spectroscopy unique combination worldwide
	synchrotron radiation	
hv angle-scanned XPD PEARL	bending magnet soft x-rays (60-2000 eV) flux $\leq 10^{12}$ ph/s on sample resolution E/ Δ E \leq 7000 polarization linear/elliptical spot size 100 µm / 1 mm	

photon beam characteristics

photon flux

photon energy	60 – 1100, 200 – 2000 eV
ultimate energy resolution	< 0.1 eV (E < 1000 eV)
polarization	linear horizontal circular +/- (< 70%)
spot size	200 μm x 70 μm (H x V, FWHM) 1000 μm x 1000 μm

[Muntwiler et al, J Synchrotron Rad 24, 354 (2017)]

energy resolution

XPS surface core level shift

PEARL = Photo-Emission and Atomic Resolution Laboratory

[www.psi.ch/sls/pearl]

performance figures

- pilot experiments
- * transferred from other beamlines

user feedback (10/2018)

Matthias Muntwiler

beamline scientist

Nicolas Bachellier

post-doc

Daria Sostina

PhD student

(SNI)

Patrick Ascher

technician

Thomas Jung

group head molecular nanoscience (LMN) partners

Philipp Aebi, U FR Roman Fasel, EMPA Thomas Greber, U ZH Ernst Meyer, U BS

- joint user workshop of the ADRESS/SX-ARPES, PEARL and SIS beamlines «photoelectron spectroscopy at the SLS 2.0» 10.-11.9.2018
- topics
 - scientific focus
 - instrumental development
 - complementary methods
- strategy for three beamlines
 - SIS
 - ADRESS/SX-ARPES
 - PEARL
- support from the community

results from the workshop

method portfolio of PEARL

- XPS/ARPES photoelectron spectroscopy
 - core levels, chemical analysis
 - on-surface reactions (\rightarrow temperature control)
 - molecular electronic states
 - band mapping, Fermi surface mapping (\rightarrow energy range, angle resolution)
- resonant XPS/AES
 - excited states (\rightarrow lower harmonic contamination)
 - orbital momentum (\rightarrow circular polarization)
 - core-hole clock
- XPD photoelectron diffraction (angle scanned, photon energy scanned)
 - «fingerprinting» of surface and crystal structure
 - detailed structural parameters
 - orbital tomography (\rightarrow energy range)
- STM scanning tunnelling microscopy and spectroscopy
 - real space surface structure
 - local density of states (occupied and unoccupied) \leftrightarrow ARPES

resonant spectroscopy: MgO/Ag(001)

PAUL SCHERRER INSTITUT

surface relaxation in multiferroic GeTe

Ge 3s photoelectron diffraction

[Muntwiler, Krempasky, unpublished]

Empa

on-surface reactions: chemistry in 2D

bottom-up fabrication of atomically precise carbon nanomaterials

Materials Science and Technology

49

Binding Energy (eV)

286 285 284 283 282

[Di Giovannantonio et al, ACS Nano 12 (2018), 74]

Intensity (arb. units) Normalized intensity

70

71

69

68

52 51 50

284

Binding Energy (eV)

285

286

286 285 284 283 282

283

282

"electronic metamaterials" from coupled quantum wells at surfaces

J. Lobo-Checa et al., Science 325, 300 (2009)

endohedral fullerenes: from bit to qubit

XMCD asymmetry

[Westerström, Dreiser et al, JACS 134, 9840 (2012)] [Stania et al, j phys chem lett 9, 3586 (2018)]

slide courtesy of T. Greber

(current performance)

- blazed gratings
- extend photon energy range (currently 70-2000 eV)
 additional grating for 30-300 eV
- high-order suppression (currently up to 20% harmonic content)
 - 3-mirror system, transmission ~60%

- spot size
 - 100 x 100 μm²
 - defocusing (1 x 1 mm²) for radiation sensitive samples
 - $1 \times 1 \mu m^2$ (capillary concept \rightarrow V. Strokov)

- analyser upgrade
 - improve angle resolution
 - small-spot compatibility (angle-deflecting)
- manipulator
 - heating
 - small-spot compatibility, scanning
- preparation system
 - port for user-supplied growth chamber
 - sample loading in clean/inert atmosphere
- sample environment
 - magnetic/electric field, variable temperature, evaporator sources, gas dosing, ...
- STM
 - versatile control system

current situation

- move focusing mirror unit, replace mirror
- move monochromator
- larger lead hutch
- endstation stays at current position

significant performance loss (transmission, divergence, resolution) upgrades of optics and endstation difficult (limited space)

- extract beam from upstream LGB
- shift beamline and endstation
- new focusing mirror
- new experiment hutch, re-use existing lead hutch
- sufficient space for optics and endstation upgrades

example in straight 10 with hard-x and soft-x undulator (4° extraction angle)

- full PGM optics scheme, 4 x 4° deflection
- limited floor space
- collocation with hard-x branch challenging

PAUL SCHERRER INSTITUT

impact on features and performance

feature	SLS 1.0	SLS 2.0	case 1 «minimum»	case 2 «upstream»	case 3 «undulator»
photon energy (eV)	60-2000 (2 gratings)	30-2000 (3 gratings)			$\overline{\mathbf{C}}$
photon rate on sample (1/s)	1011	1012	(;) (;)		© 4
max. energy resolution (E/ ΔE)	7000	10000	(;) (;)		
spot size (µm²)	200 x 100 1000 x 1000	1 x 1 100 x 100 1000 x 1000	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	 ○ 1 ○ 0 	(1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
polarization	LH C+, C-	LH C+, C-	☺^ご2	© ≅2	
harmonic contamination	< 20%	< 2%	$\overline{\mathbf{c}}$: 3	
end station		upgrades extensions	© ;>5		© ;>5
1. capillary optics4. check for radiation sensitive samples2. dynamic bump5. limited space					

3. high-order suppression unit

- growing demand
 - complementary local and non-local methods
 - correlate atomic/molecular and electronic structure
- PEARL fulfills many of these demands already today in a unique, versatile setup
 - ARPES performance needs improvement
- concepts for SLS 2.0
 - «minimal changes»
 - lower x-ray performance than at SLS 1.0
 - upstream bending magnet
 - improved (or at least maintained) x-ray performance
 - room for further development
 - undulator
 - highest x-ray quality (flux, resolution, polarization)
 - requires a completely new beamline
 - radiation damage to sensitive samples

acknowledgements

https://www.psi.ch/sls/pearl

recent collaborators

Daria Sostina, PSI Nicolas Bachellier, PSI Luis H. de Lima, Zürich Jun Zhang, PSI Roland Stania, Zürich

scientific partners

Philipp Aebi, Fribourg Roman Fasel, Roland Widmer, Dübendorf Thomas Greber, Zürich Ernst Meyer, Thilo Glatzel, Basel

funding

Swiss National Science Foundation European Commission (PSI Fellow) Empa Materials Science and Technology Swiss Nanoscience Institute Universität Zürich Université de Fribourg Ministry of science, technology and innovation of Brazil