Polarized source applications

Kurt Aulenbacher – 12.09.2019
Institut für Kernphysik
Johannes Gutenberg-Universität Mainz
supported by PRISMA-cluster of excellence and BMBF Verbundforschung FKZ 05K16UMA” (HOPE-II)
Outline

- Introduction – Applications of polarized beams
- Advantages of “polarized”-Photocathodes
- Limitations and challenges – surface photovoltage, charge lifetime, fluence lifetime
- Summary and outlook
Future (challenging) applications of polarized beams

- Solid state physics with magnetic interaction
 - high brilliance beams (microscopy) & high time resolution
 (e.g. Spin polarized ultrafast e-diffraction, “SUED-beams”)
 typical application: \(E_{\text{source}} \approx \text{keV-MeV}, t_p << 1\text{ps}, \varepsilon_{\text{norm}} < 1\mu\text{m} \)
 QB>pC, \(f = \text{kHz-MHz} \)
- Particle physics – spin interaction at “fundamental” scales
 - medium (peak) brilliance, high average current sources
 e.g. ERL-based double polarized e-ion collider (eRHIC, LHeC) \(E_{\text{source}} \approx 200-500\text{keV,} \)
 cw. operation, current average mA – 50mA
<table>
<thead>
<tr>
<th>Experiment</th>
<th>Mode</th>
<th>E (MeV)</th>
<th>I (mA)</th>
<th>Data taking (h)</th>
<th>Polarisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>EB</td>
<td>155</td>
<td>0.15</td>
<td>15000</td>
<td>0.85, mandatory</td>
</tr>
<tr>
<td>MAGIX</td>
<td>ER</td>
<td>105</td>
<td>1-10</td>
<td>?</td>
<td>0.85, if possible</td>
</tr>
</tbody>
</table>
Strained Superlattice-cathode

GaAs/GaAsP”Strained Superlattice” :
SL causes shift of Band gap energy wrt GaAs and removal of degeneracy
: Gradient doping

SLAC/SVT — Superlattice

<table>
<thead>
<tr>
<th></th>
<th>5 nm</th>
<th>(p=5 \times 10^{19} \text{ cm}^{-3})</th>
<th>(p=5 \times 10^{17} \text{ cm}^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GaAs/GaAsP SL</td>
<td>(3.8/2.8 nm) (\times 14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GaAsP(_{0.35})</td>
<td>2750 nm</td>
<td>(p=5 \times 10^{18} \text{ cm}^{-3})</td>
<td></td>
</tr>
<tr>
<td>Graded GaAsP(_{x}) ((x = 0\sim 0.35))</td>
<td>5000 nm</td>
<td>(p=5 \times 10^{18} \text{ cm}^{-3})</td>
<td></td>
</tr>
<tr>
<td>GaAs buffer</td>
<td>200 nm</td>
<td>(p=2 \times 10^{18} \text{ cm}^{-3})</td>
<td></td>
</tr>
<tr>
<td>p-GaAs substrate ((p>10^{18} \text{ cm}^{-3}))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Strained Superlattice vs “strained layer”:
SL causes shift of Band gap energy wrt GaAs and removal of degeneracy
→ “Band structure engineering” (e.g. frequency double telecom lasers…)

Absorption enhanced by DBR-Reflector causing active region to be a cavity with enhanced absorption at resonance → increased QE. 6% @ 770nm (>30mA/Watt) @ >80% Pol.
Further Advantages of SL

1. Due to low doping in small active region: large mean free path $\lambda \approx d_{active}$
 \Rightarrow fast $t << 5$ps
2. almost 100% “sink” at surface
 \Rightarrow no tail (see talk by N. Scahiil tomorrow)
3. Huge “gradient” doping at surface
 \Rightarrow high current density and/or fluence possible in spite of “photovoltage”
4. (Quite) low transverse energy due to NEA-near band gap operation

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs</td>
<td>5 nm</td>
<td>$p=5 \times 10^{19} \text{ cm}^{-3}$</td>
</tr>
<tr>
<td>GaAs/GaAsP SL</td>
<td>(3.8/2.8 nm) $\times 14$</td>
<td>$p=5 \times 10^{17} \text{ cm}^{-3}$</td>
</tr>
<tr>
<td>GaAsP$_{0.35}$</td>
<td>2750 nm</td>
<td>$p=5 \times 10^{18} \text{ cm}^{-3}$</td>
</tr>
<tr>
<td>Graded GaAsP$_x$</td>
<td>5000 nm</td>
<td>$p=5 \times 10^{18} \text{ cm}^{-3}$</td>
</tr>
<tr>
<td>(x = 0~0.35)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GaAs buffer</td>
<td>200 nm</td>
<td>$p=2 \times 10^{18} \text{ cm}^{-3}$</td>
</tr>
<tr>
<td>p-GaAs substrate (p$>10^{18}$ cm$^{-3}$)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

expected response without exp. resolution
Limitations of Spin-polarized Photocathodes
Limitations of Spin-polarized Photocathodes

SLAC pulse-measurements for increasing laser intensity

![Graph showing SLAC pulse-measurements for increasing laser intensity](a)

I/a.u.

How that?
Trapped electrons in surface region create “Photovoltage” which reduces NEA
Model: Thermal equilibrium is NEA-state, but current diffusing to surface
charges “condenser”, hole current discharges towards equilibrium

Consequence:
- current density limit in steady state
 (may be much lower than vacuum space-charge limit)
- typical time constants of $\tau \sim \text{ns}$ lead to “charge limit” for bunches $< \tau$
 – high fields, high doping level favorable

$$I_e = \frac{Q E_0}{A} \frac{\lambda_L P}{h c A} \left[1 - \frac{E_0}{\tilde{\chi}} \ln \left(1 + \frac{Q E_0}{j_p} \frac{\lambda_L P}{h c A} \right) \right]$$

Model used by
steady state-current measurements with the MESA-source 2.5MV/m, doping level $1-2 \times 10^{19}$

For practical purposes it is obviously important to avoid reduction of q.e.
Difficulties of Spin-polarized Photocathodes

Another illustration from MESA-source operation:

Observation: Beam losses are (highly) detrimental. Field emission counts as beam loss (or worse) empirical: loss of 100nA reduces lifetime to 100 hours several tricks allow to reduce losses below 10^{-6} in the vicinity of the source note finite lifetime without operation → chemical (thermal) decomposition?
Difficulties of Spin-polarized Photocathodes

Good heat conductivity is essential!
Good example: U. Weigel et. al achieve $\Delta T = 15$K/W

\[\frac{1}{\tau} = \sum_i \frac{1}{\tau_i} \]

Besides the contributions already discussed there is **ion backbombardment**.

excentrically started

Electron-beam

causes back traveling ions

Experimental finding

PhD thesis Aulenbacher
Mainz 1994, see also Andresen et al. SLAC pub
However….

\[\frac{1}{\tau_{\text{Obs}}} = \sum_{i} \frac{1}{\tau_{i}} \]

Besides the contributions already discussed there is **Ion backbombardment**. Example from MAMI-beam-times

Charge lifetime:
\[C_\tau = I^* \tau_{\text{obs}} = Q = \text{const!} \]

Here \(~200\)C!

Fluence lifetime:
\[F = \frac{C_\tau}{A_{\text{beam}}} \sim 10^5 \text{ C/cm}^2 \]

Note: \(\varepsilon_{\text{norm}} \sim 100\)nm in these experiments
(150\(\mu\)m Laser spot rms)
\(\Rightarrow\) can Charge lifetime be increased to \(>>1000\)C at \(\varepsilon \sim 1\mu\)m?
Careful experiments have been done at JLAB: achieved >1000C with green light illumination at about 9mA current. Open question: other contributions become non negligible (Heating, non-linear transmission loss?)

Note that (non-linear space charge may create halo...)

Charge lifetime

Fluence lifetime

J. Grames et al.
PHYS. REV. ST.-AB 14, 043501 (2011)
GaAs/GaAsP superlattice cathodes offer high polarization (>85%), high QE (>1%) fast response (probably <1ps) and low tail (see N. Scahill’s talk tomorrow) as well as low thermal emittance.

They seem well suited to fulfill materials-science applications needs like SUED. However, high voltage limitations have to be taken into account (d.c. fields < 5-10MV/m?)

The so far achieved charge lifetimes of about 1000 C limit practical current to about 1mA. (Cathode regeneration every 300 hours).

Projects like ERL based colliders require more R&D to shift the limit: Control of Ion backbombardment, (non-linear) transmission loss and cathode heating are pressing issues.

SRF gun could improve on most of the problems mentioned
Thank you for your attention!