

Polarized source applications

Kurt Aulenbacher – 12.09.2019 Institut für Kernphysik Johannes Gutenberg-Universität Mainz supported by PRISMA-cluster of excellence and BMBF Verbundforschung FKZ 05K16UMA" (HOPE-II)

- Introduction Applications of polarized beams
- Advantages of "polarized"-Photocathodes
- Limitations and challenges surface photovoltage, charge lifetime, fluence lifetime
- Summary and outlook

- Solid state physics with magnetic interaction
 - → high brillance beams (microscopy) & high time resolution (e.g. Spin polarized ultrafast e-diffraction, "SUED-beams") typical application: E_{source} ~keV-MeV, t_p<<1ps, ε_{norm}<1µm QB>pC, f =kHz-MHz

Particle physics – spin interaction at "fundamental" scales

 → medium (peak) brillance, high average current sources
 e.g. ERL-based double polarized
 e-lon collider (eRHiC, LHeC) E_{source}~200-500keV,
 cw. operation, current average mA – 50mA

Example: cw-spin-polarized beam: MESA

DHANNES GUTENBERG UNIVERSITÄT MAI

MAGIX

ER

105

1-10

?

0.85, if possible

Strained Superlattice-cathode

GaAs/GaAsP"Strained Superlattice" :

(T. Maruyama et al. Appl. Physics. Lett. 85,13 (2004) 2640)

SL causes shift of Band gap energy wrt GaAs and removal of degeneracy

: Gradient doping

GaAs	5 nm	$p=5\times10^{19}cm^{\text{-3}}$
GaAs/GaAsP SL	(3.8/2.8 nm) ×14	p=5 $ imes$ 10 17 cm $^{-3}$
GaAsP _{0.35}	2750 nm	p=5 $ imes$ 10 ¹⁸ cm ⁻³
Graded GaAsP _x (x = $0 \sim 0.35$)	5000 nm	$p=5\times10^{18}cm^{\text{-3}}$
GaAs buffer	200 nm	p=2 $ imes$ 10 ¹⁸ cm ⁻³
p-GaAs substrate (p>10 ¹⁸ cm ⁻³)		

SLAC/SVT – Superlattice

Strained Superlattice-cathode

ΙGĺU

OHANNES GUTENBERG UNIVERSITÄT MAINZ

SL causes shift of Band gap energy wrt GaAs and removal of degeneracy \rightarrow "Band structure engineering" (e.g. frequency double telecom lasers...)

⁽T. Maruyama et al. Appl. Physics. Lett. 85,13 (2004) 2640)

QE/P

ĺň ľ Žíň ľ

JLAB/SVT – Superlattice

W. Liu et al. Appl. Physics. Lett. 109,252104 (2016) doi: 10.1063/1.4972180

Absorption enhanced by DBR-Reflector causing active region to be a cavity with enhanced absorption at resonance \rightarrow increased QE. 6% @ 770nm (>30mA/Watt) @ >80% Pol.

Further Advantages of SL

- 1. Due to low doping in small active region: large mean free path $\lambda \approx d_{active}$ \rightarrow fast t<<5ps
- 2. almost 100% "sink" at surface
 - \rightarrow no tail (see talk by N. Scahill tomorrow)
- 3. Huge "gradient" doping at surface
 - → high current density and/or fluence possible in spite of "photovoltage"
- 4. (Quite) low transverse energy due to NEA-near band gap operation

GaAs	5 nm	$\rm p=5\times10^{19}\rm cm^{-3}$
GaAs/GaAsP SL	(3.8/2.8 nm) ×14	p=5 $ imes$ 10 17 cm $^{-3}$
GaAsP _{0.35}	2750 nm	p=5 $ imes$ 10 18 cm $^{-3}$
Graded GaAsP _x (x = $0 \sim 0.35$)	5000 nm	$p=5\times10^{18}cm^{\text{-3}}$
GaAs buffer	200 nm	p=2 $ imes$ 10 ¹⁸ cm ⁻³
p-GaAs substrate (p>10 ¹⁸ cm ⁻³)		

K. Aulenbacher et al. J. Appl. Phys., Vol. 92, No. 12, (2002) 7536

Limitations of Spin-polarized Photcathodes

SLAC pulse-measurements for increasing laser intensity

G.A. Mulhollan et al. / Physics Letters A 282 (2001) 309-318

How that?

Limitations of Spin-polarized Photocathodes

Trapped electrons in surface region create "Photovoltage" which reduces NEA Model: Thermal equilibrium is NEA-state, but current diffusing to surface charges "condenser", hole current discharges towards equilibrium

Consequence:

- current density limit in steady state (may be much lower than vacuum space-charge limit)
- typical time constants of τ~ns lead to "charge limit" for bunches <τ
- high fields, high doping level favorable

 $\frac{I_{\rm e}}{A} = QE_0 \frac{\lambda_{\rm L}}{hc} \frac{P}{A} \left[1 - \frac{E_0}{\widetilde{\chi}} \ln \left(1 + \frac{QE_0}{j_{\rm p}} \frac{\lambda_{\rm L}}{hc} \frac{P}{A} \right) \right]$ Model used by G.A. Mulhollan et al. / Physics Letters A 282 (2001) 309–318

S. Friederich et al. IPAC 2019 doi:10.18429/JACoW-IPAC2019-TUPTS011 Fits according to model

steady state-current measurements with the MESA-source 2.5MV/m, doping level 1-2*10¹⁹

For practical purposes it is obviously important to avoid reduction of q.e.

Another illustration from MESA-source operation:

Observation : Beam losses are (highly) detrimental. Field emission counts as beam loss (or worse) empirical: loss of 100nA reduces lifetime to 100hours several tricks allow to reduce losses below 10⁻⁶ in the vicinity of the source note finite lifetime without operation→ chemical (thermal) decomposition?

Difficulties of Spin-polarized Photcathodes

Good heat conductivity is essential!Mainz 2011Good example: U. Weigel et. al achieve $\Delta T = 15 \text{K/W}$ Nuclear Instruments and Methods in Physics Research A 536 (2005) 323–328

However....

Besides the contributions already discussed there is **lon backbombardment**.

excentrically started Electron-beam

PhD thesis Aulenbacher Mainz 1994, see also Andresen et al. SLAC pub causes back traveling ions

ĺŇ ŠÍŇ

JG U HANNES GUTENBERG UNIVERSITÄT MAINZ

 $\frac{1}{\tau_{Obs}} = \sum_{i} \frac{1}{\tau_i}$

However....

Besides the contributions already discussed there is **Ion backbombardment**. Example from MAMI-beam-times

Charge lifetime: $C_{\tau}=I^{*}\tau_{obs}=Q=const!$

Here ~200C !

Fluence lifetime: F= C $_{\tau}$ /A_{beam} ~10⁵ C/cm²

Note: ε_{norm}~100nm in these experiments (150µm Laser spot rms)
→ can Charge lifetime be increased to >>1000C at ε~1µm?

Scaling of Charge lifetime ? ?

Careful experiments have been done at JLAB: achieved >1000C with green light illumination at about 9mA current Open question: other contributions become non negligible (Heating, non-linear transmission loss?)

Note that (non-linear space charge may create halo...)

- GaAs/GaAsP superlattice cathodes offer high polarization (>85%), high QE (>1%) fast response (probably <1ps) and low tail (see N. Scahill's talk tomorrow) as well as low thermal emittance
- they seem well suited to fulfill materials-science applications needs like SUED. However, high voltage limitations have to be taken into account (d.c. fields < 5-10MV/m?)</p>
- □ The so far achieved charge lifetimes of about 1000 C limit practical current to about 1mA. (Cathode regeneration every 300 hours).
- Projects like ERL based colliders require more R&D to shift the limit: Control of Ion backbombardment, (non-linear) transmission loss and cathode heating are pressing issues.
- □ SRF gun could improve on most of the problems mentioned

Thank you for your attention!

min