

Beam dynamics simulation with photoemission modeling in strong RF and beam-self fields

European Workshop on Photocathodes for Particle Accelerator Applications (EWPAA 2019)• PSI •11-13.9.2019

Ye Chen
Deutsches Elektronen-Synchrotron DESY

Thanks to

EWPAA Scientific Programme Committee for the opportunity to present this work,

and my colleagues:

- F. Stephan, M. Krasilnikov and the DESY PITZ team W. Decking and the Eu-XFEL team
- S. Lederer, S. Schreiber, M. Dohlus, I. Zagorodnov, DESY
- E. Gjonaj, H. De Gersem, T. Weiland, TEMF TU Darmstadt
- L. Monaco, D. Sertore, P. Michelato, INFN
- K. L. Jensen, NRL
- J. J. Petillo, Leidos
- R. Ganter, PSI
- R. Xiang, A. Arnold, J. Teichert, HZDR
- D. H. Dowell, J. F. Schmerge, SLAC,

and many others...for your contributions and useful discussions.

DESY talks from EWPAA 2017 HZB

Talk: Challenges of the Cs₂Te photocathodes for FLASH and European XFEL by S. Lederer

- → Performance of Cs₂Te photocathodes at DESY FEL facilities
- → Further requirements posed

Talk: Space charge dominated photoemission at PITZ by M. Krasilnikov

→ Experimental & numerical studies of photoemission in RF gun environment

Goal: to show what a role photoemission can play in injector beam dynamics

Contents

- Budgeting injector emittance in a transition regime of photoemission*
- Observation of (strong) cathode field dependencies of measured QE in the gun
- Summary

Budgeting injector emittance in a transition regime of photoemission

FEL-based X-ray facilities require high-brightness electron injectors

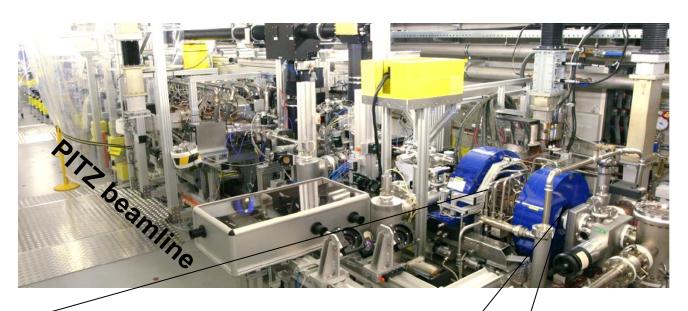
- High peak current (I) & low emittance $(\varepsilon_n) \rightarrow \text{high beam brightness } (B_n)$
 - \rightarrow High $I \rightarrow$ high charge and short length \rightarrow high FEL gain and efficiency
 - \rightarrow Low $\varepsilon_n \rightarrow$ required beam energy at a given wavelength (λ)
- Fixed charge → emittance minimization
- Emittance can only be improved in the injector
- Emittance budget & optimization strategy
 - → Minimizing space charge contribution
 - → Improving cathode intrinsic emittance
 - → Making other items negligible
- Intrinsic emittance → lower limit of final emittance

$$B_n \propto \frac{I}{{\varepsilon_n}^2}$$

$$\frac{\varepsilon_n}{\varepsilon_n} \approx \frac{\lambda}{1}$$

$$arepsilon_n \propto \sqrt{arepsilon_{th}^2 + arepsilon_{spch}^2 + arepsilon_{rf}^2 + arepsilon_{Bz}^2 + \cdots} + coupling items$$
intrinsic emittance $(arepsilon_{th})$
space charge emittance $(arepsilon_{spch})$
rf emittance $(arepsilon_{rf})$
cathode magnetic field caused emittance $(arepsilon_{Bz})$

W. Decking, H. Weise, Commissioning of the European XFEL accelerator, Paper MOXAA1, IPAC 2017


F. Stephan, M. Krasilnikov, High Brightness Photo Injectors for Brilliant Light Sources, Chap. Of "Synchrotron Light Sources and Free-Electron Lasers", 2016

Ch.-X. Tang, Paper MO2A04, LINAC 2016

F. Sannibale, W.S. on High Repetition-rate XFEL Physics and Technology, 2017

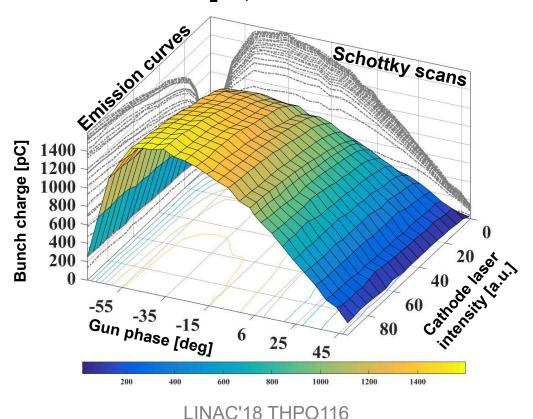
Emittance optimization at PITZ for FLASH and European XFEL

- Photo Injector Test facility at DESY in Zeuthen (PITZ)
- Typical optimization scheme at PITZ
 - Slit-Scanning emittance vs. gun solenoid current at a given transverse cathode laser spot size
 - Optimize the spot size for smallest achievable emittance

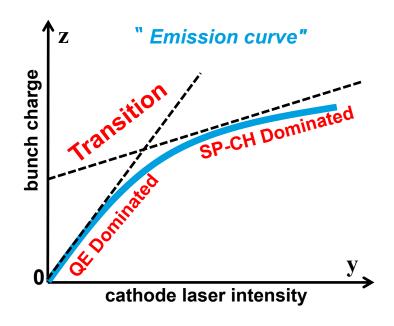
(fixed bunch charge, cathode laser pulse length and shape, gun and booster gradient and phase)

RF Gun¹⁻²

- **L-band** (1.3 GHz) 1.6-cell copper cavity
- •Ecath ≥ 60 MV/m → 7 MeV/c e-beams
- ■650 μs ×10 Hz → up to **45 kW** av. RF power
- **•Cs**₂**Te** PC³ (QE~5-20%) \rightarrow up to 6 nC / bunch

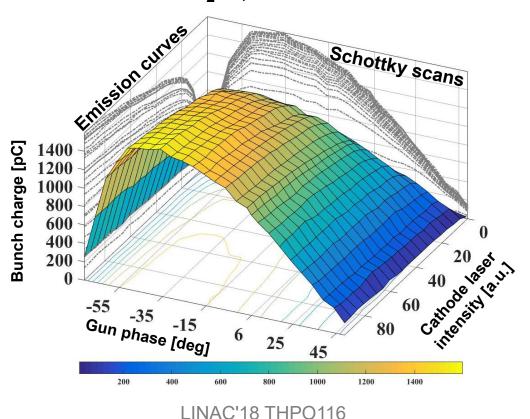

¹Phys. Rev. ST Accel. Beams 13, 020704 (2010)

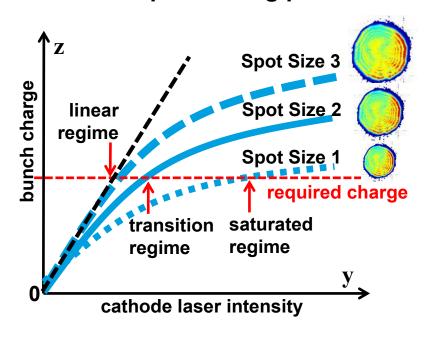
²Phys. Rev. ST Accel. Beams 15, 100701 (2012)


³Cathode production: S. Lederer, L. Monaco, D. Sertore, P. Michelato

Transition regime of photoemission in RF gun environment

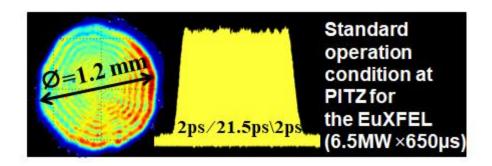
Emission characterization in the gun Cs₂Te, 60 MV/m

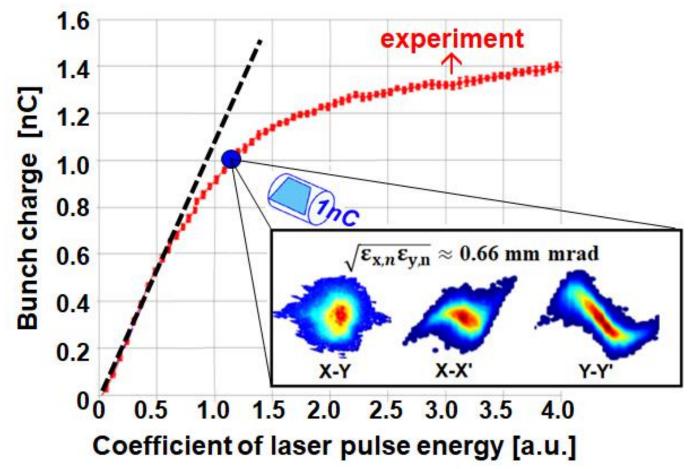

Concept: transition regime


QE: Quantum Efficiency **SP-CH:** Space-Charge

Transition regime of photoemission in RF gun environment

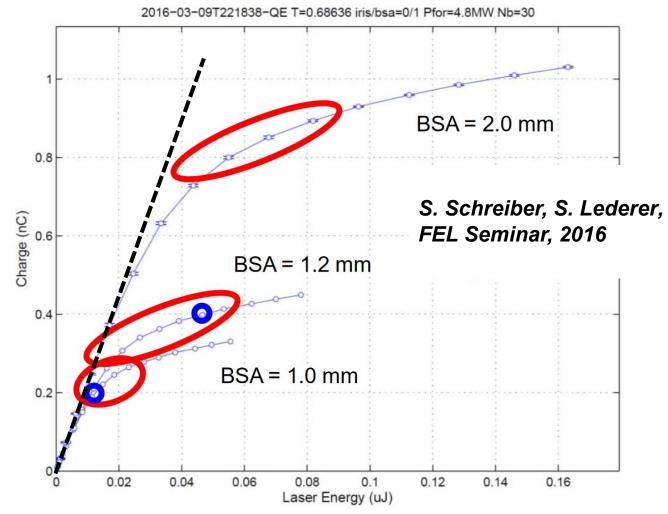
Emission characterization in the gun Cs₂Te, 60 MV/m


Concept: working point


QE: Quantum Efficiency **SP-CH:** Space-Charge

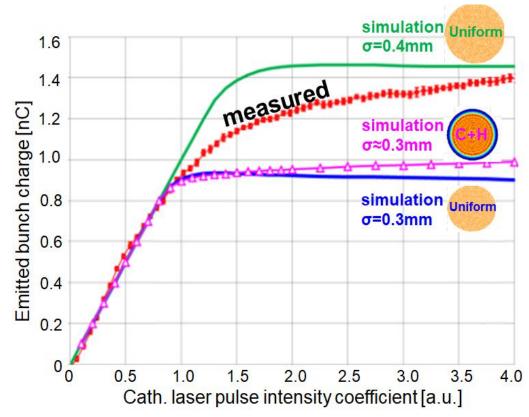
Spot Size: transverse laser spot size on cathode Trans. distributions used only for illustration purpose

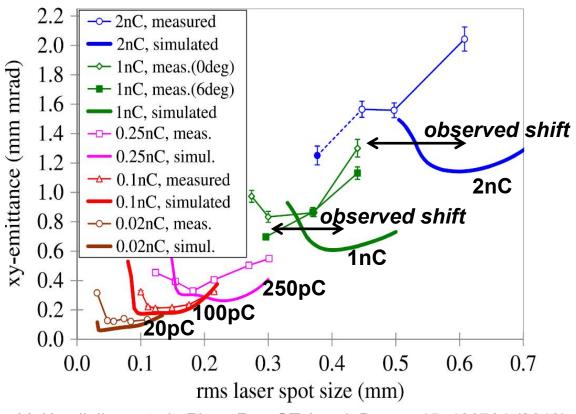
Experimental observation on emittance in transition regime of emission


Under standard operation conditions at PITZ, best emittance obtained in transition regime of emission!

Typical working points for the gun at FLASH

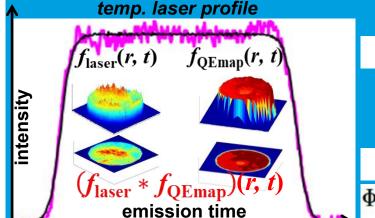
Accelerator actually operated at the photoemission regimes with strong space-charge effects at cathode




Dynamics in TRE cannot be well reproduced by simulations

Simulated emission curve ≠ measured one

NIM A 889, 129-137 (2018) NIM A 871, 97–104 (2017)


Simulated optimum laser spot size ≠ measured one

M. Krasilnikov, et al., Phys. Rev. ST Accel. Beams 15, 100701 (2012)

Bring cathode and electron emission physics to beam dynamics

- Not yet straightforward consideration of cathode effects¹⁻³ in particle simulations
- Emission model needed for particle dynamics with collective effects at cathode
- → first priority: model emission dynamics in strong fields
 - incorporating an emission model⁴⁻⁶ with a Lienard-Wiechert approach⁷⁻⁹
 - transient charge packet creation by interplays of cathode QE with time and space dependent rf and beam self-fields
- Features
- → measurement-based model training
- → dynamic beam production through cathode physics model
- → taking into account impacts of cathode field effects onto intrinsic beam slice formation

In collaboration with TU Darmstadt

Charge production per time step

$$\mathrm{dQ}\left(r_{\perp},t\right) = \frac{e\alpha dE_{las}(r_{\perp},t)dr_{\perp}dt}{\hbar\omega\left\{1 + E_{a}/\left[\hbar\omega - \Phi_{\mathrm{eff}}\left(r_{\perp},t\right)\right]\right\}^{2}}$$

Field-dependent cathode work function

$$\Phi_{\rm eff} = \Phi_0 \pm \sqrt{e[E_{\rm rf}(r_{\perp}, t, z=0) + E_{\rm sc}(r_{\perp}, t, z=0)]/4\pi\epsilon_0}$$

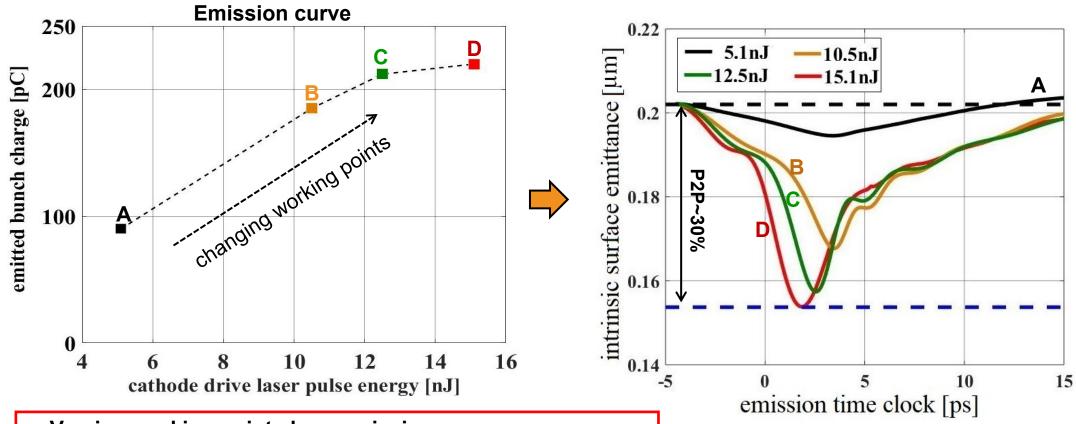
¹Nathan A. Moody, Kevin L. Jensen, et al., Phys. Rev. Applied 10, 047002 (2018)

²D. H. Dowell and J. F. Schmerge, Phys. Rev. ST Accel. Beams 12, 074201 (2009)

³J. Smedley, et al., An Engineering Guide to Photoinjectors Photocathode Theory (2016)

⁴Kevin L. Jensen, et al., Phys. Rev. ST Accel. Beams 17, 043402 (2014)

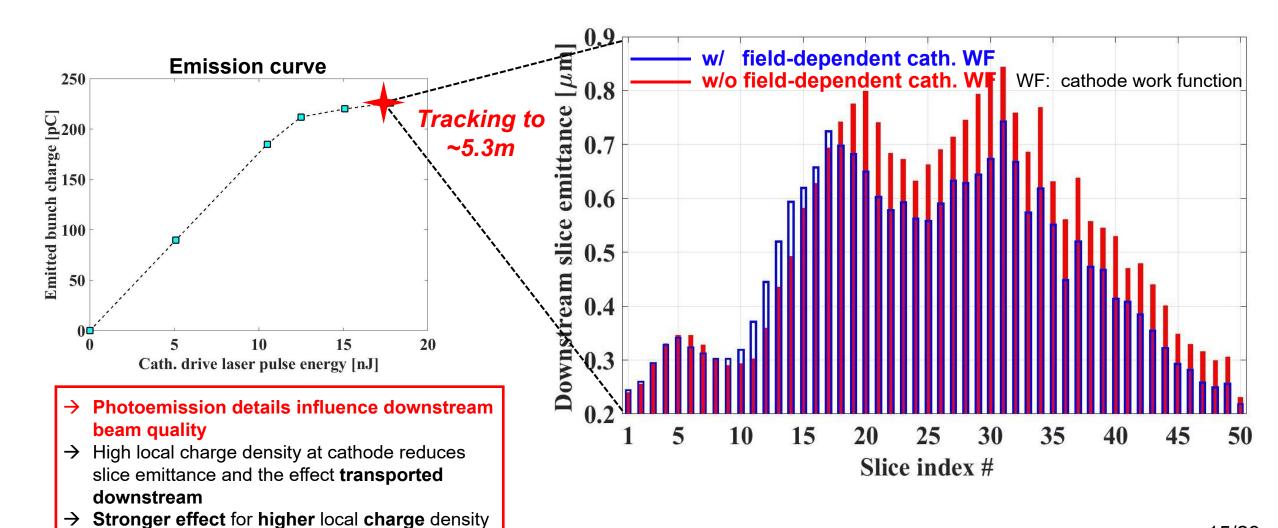
⁵Kevin L. Jensen, et al., J. Appl. Phys. 104, 044907 (2008)

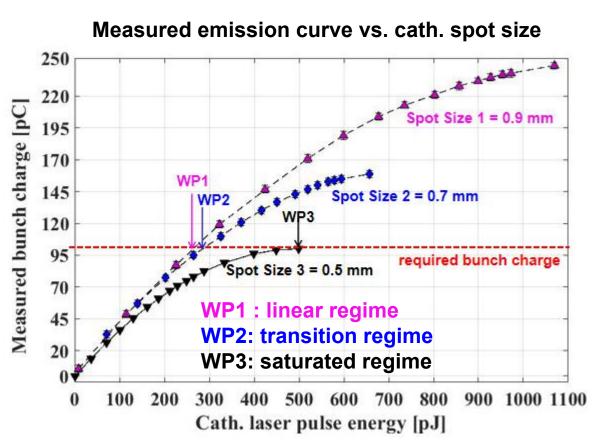

⁶John Petillo, et al., IEEE Trans. Electron Devices Sci., 52(5),742-748 (2005)

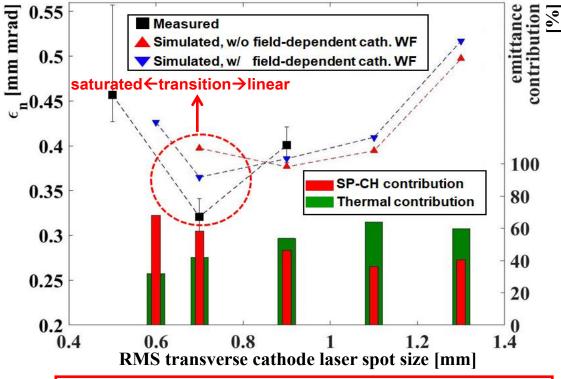
⁷Y. Chen, M. Krasilnikov, E. Gjonaj, et al., NIM A 889, 129-137 (2018)

⁸R. Ryne, C. Mitchell, J. Qiang, et al, FEL 2013

⁹F. Ciocci, L. Giannessi, A. Marranca, et al., NIM A 393 (1997), 434-438.


Effect on intrinsic surface emittance


- Varying working point along emission curve
 - → changing intra-bunch modulation of intrinsic surface emittance
 - → overall surface emittance reduction by space charge fields
 - → peak to peak ~30% and ~10% in average
 - → stronger effects for higher local charge densities at cathode

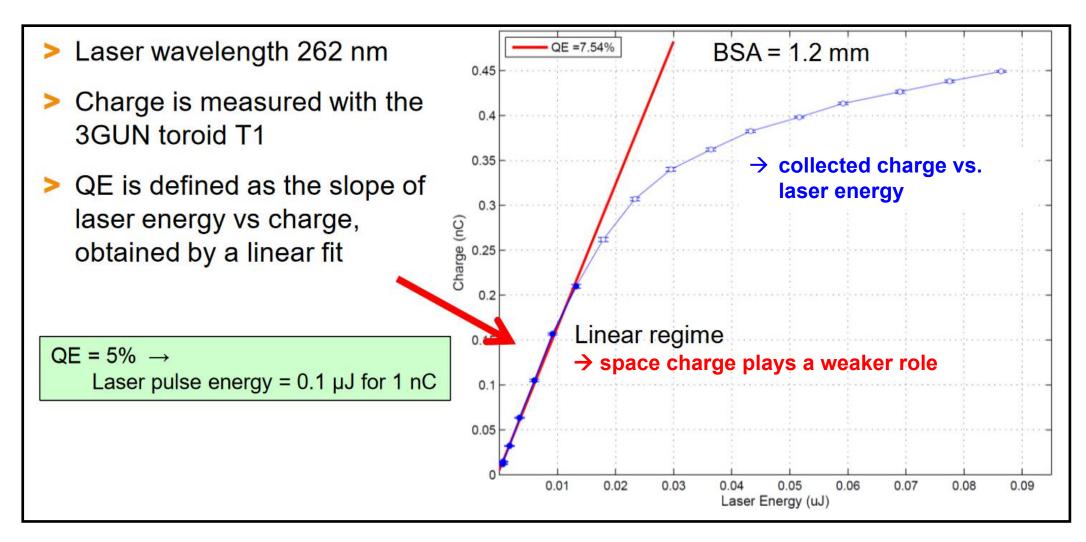

IPAC'19 WEPTS013

Tracking accelerated bunches (~19 MeV/c) downstream till ~5.3m

Measurement vs. Simulation: optimized emittance vs. cathode laser spot size

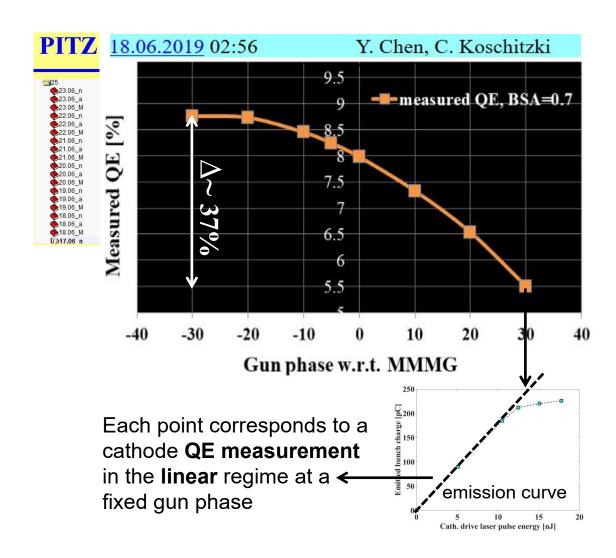
- Interplay between space charge emittance and intrinsic emittance gives optimum spot size for best emittance in transition regime
- Improved simulation suggests optimum spot size same as measured

Summary I


Budgeting injector emittance in a transition regime of photoemission

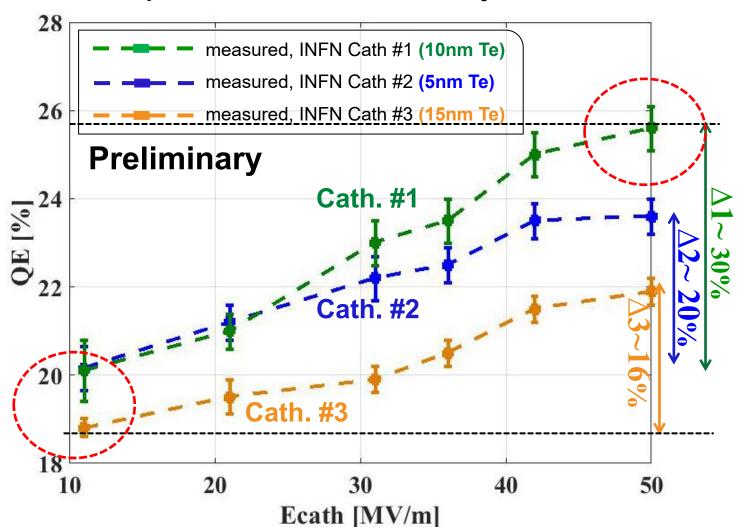
- Working at transition regime of emission delivers best experimentally optimized emittance
- Photoemission details influence downstream beam qualities
- Emission modeling helps better understand beam dynamics
- Cathode physics important for better emission modeling
- More detailed modeling approach needed for strong space charge fields at cathode

Observation of (strong) field dependencies of measured QE in the gun


QE measurement in the gun

S. Schreiber, S. Lederer, FEL Seminar, 2016

Example of measured QE vs. cathode fields in the PITZ gun by charge-phase scan



- Cs₂Te
- Gun phase ~ [-30 30] deg (not full range scan)
- Cathode field ~ [5 38] MV/m (relatively low fields)
 - → Measured QE enhanced as cathode fields increased, (stronger) effect routinely observed

Experimental results on QE vs. cathode fields for fresh Cs₂Te cathodes

Cathodes produced at INFN and recently tested at PITZ^[1-2]

¹WEA04, FEL2019 ²WEP062, FEL2019

Measured QE change

Cath. #1: ~6%

Cath. #2: ~4% Cath. #3: ~3%

- → QE ≥ 19%, increased to 26% for Ecath up to 50 MV/m
- → Strong field-dependency trend of measured QE
- → Stronger than Schottky-like effect
- → +Roughness induced field enhancement and local beam divergence change: seems still difficult well explaining both QE and thermal emittance by tests
- → More detailed cathode-fielddependent photoemission model needed!!!

Summary

Budgeting injector emittance in a transition regime of photoemission

- Working at transition regime of emission delivers best experimentally optimized emittance
- Photoemission details influence downstream beam qualities
- Emission modeling helps better understand beam dynamics
- Cathode physics important for better emission modeling
- More detailed modeling approach needed for strong space charge fields at cathode

Observation of (strong) field dependencies of measured QE in the gun

- Experiments show measured cathode QE strongly depends on surface fields
- Effect stronger than expected (modelled)
- Improvements of emission models needed (e.g. effects of penetrating fields, detailed surface roughness modeling)

Thank you for your attention!