

ENERGY CONSUMPTION CONSIDERATIONS IN THE BEAM PHYSICS DESIGN AND OPTIMIZATION OF THE ESS LINAC

Mamad Eshraqi 2019 November 28-29

5th Workshop on Energy for Sustainable Science and Research Infrastructures (ESSRI)

PSI, Villigen, Switzerland

FROM LARGEST ARCHAEOLOGY SITE IN SWEDEN

Forntid möter framtid – Arkeologi på ESS-området

Archaeology at the ESS-site

2014 September

ato Common

Key Linac parameters		Controls		
Energy	2.0 GeV	Control variables.	~1.6E6 PVs	
Current	62.5 mA	MPS and PSS		
Repetition rate	14 Hz	EPICS7		SK
Pulse length	2.86 ms	μΤϹΑ.4		E C
Losses	<iw m<="" td=""><td></td><td>6</td><td></td></iw>		6	
lons	р	Flexible/Upgradable design		
		Minimize energy con	sumption ⁽	
<	352.21 MHz	704.42	MHz	
← 2.5 m → ←	$+ 4.6 \text{ m} \rightarrow + 4.0 \text{ m} \rightarrow + 38.9 \text{ m} \rightarrow$	$\leftarrow 55.9 \text{ m} \rightarrow \leftarrow 76.7 \text{ m} \rightarrow \odot$	← 178.9 m →	
Source		$\begin{array}{c c} \bullet & Spokes & \bullet & Medium \beta \\ \uparrow & & \uparrow & & \uparrow \\ \uparrow & & & \uparrow & & \uparrow \\ \end{array}$	High $\beta \rightarrow HEB$	ST & A2T
75 keV ∐	3.6 MeV 1 90 MeV	216 MeV Ц 571 MeV Ц	2000 MeV 🛛	
Rotating tungsten target		Instruments		
Target diameter	2.6 (0.45) m	Large Scale Structur	es	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Mass	II (3) tons		FSTIA	
	36 sectors		FREIA	
Rev. freq.	~0.4 Hz			
Expected lifetime	5 years	Engineering		
Cooling	He gas			
Beam ports	42		NMX	
Peak flux	~30-100 × ILL	Diffraction		
Cold moderator	Liquid H ₂			
	7 K		INAGIC	
Thermal moderator	30 mm	Spectroscopy	C-SPEC	
	H ₂ O		BIFROST	
	300 K		I-REX	
M. Eshraqi		5 th ESS	SRI, PSI	

SOME UPDATES

6

2019 Nov 28-29

	Length	No. Magnet	No. Cavs	β Geometric	No. Sections	Power (kW)
LEBT (from Plasma)	2.7431	2 Solenoids				
RFQ	4.545					1600
MEBT	3.986	Quads	3			15
DTL	38.881		5		5	2200
LEDP + Spoke	55.86	26 Quads	26	0.50 _(Optimum)	13	330
Medium Beta	76.68	18 Quads	36	0.67	9	870
High Beta	178.920	42 Quads	84	0.86	21	1100
Contingency + HEDP	32.25	32 Quads		(0.86)	15	
DogLeg	64.355	12 Quads + 2				
A2T	44.743	6 Quads + 8				
	602.9641					

Colin Carlile, Thomas Parker

Front End Cooling	Magnet and coupler cooling
Klystr	on and load cooling
LLRF, Modulato	or, Klystron and Load design
	Cryoplant
Beam p	hysics

12

• Each structure type is efficient over a certain velocity range, by choosing the right transition velocity (energy)

A. France, "Advanced RF Design and Tuning Methods of RFQ for High Intensity Proton Linacs", IPAC14

PSS NCL OR SCL, THE TRANSITION ENERGY

- A normal conducting structure delivers only a fraction of the energy to the beam, while a superconducting structure delivers almost all the energy to the beam (e.g. the ESS DTL delivers 50% of the power to the beam)
 - Then why don't ESS uses SC structures at lower energies?

SS NCL OR SCL, THE TRANSITION ENERGY

- A normal conducting structure delivers only a fraction of the energy to the beam, while a superconducting structure delivers almost all the energy to the beam (e.g. the ESS DTL delivers 50% of the power to the beam)
 - Then why don't ESS uses SC structures at lower energies?
 - Duty cycle and final energy are two of the main parameters to consider for choosing the right transition energy*

- The optimization was done on:
 - Number of cells
 - Number of cavities per cryomodule
 - Geometric Beta
 - An independent study on the number of spoke families

• Geometric betas of SC cavities have been optimized for the shortest linac.

- Coupler's coupling optimization for reduced reflected power
 - Pre-2012 design

Stephen Molloy, Optimizing High-Power Input Coupler, Internal ESS Note, 2011 Nov 21

- Previous methods of handling the frequency jump in linacs*:
 - Local Matching
 - Adjusting the phase advance smoothness locally
 - Constant potential shape
 - Adjusting the sync phase and amplitude such that the potential well keeps the same shape
 - Constant acceptance
 - Adjusting the sync phase and amplitude such that the acceptance area stays the same
 - Constant acceptance in phase
 - Adjusting the sync phase and amplitude such that the acceptance in phase (not energy) is the same
- ESS high acceleration:
 - Phase advance smoothing starting in the upstream part

R. Duperrier, N. Pichoff and D. Uriot , Frequency jump in an ion linac, PRST-AB 10, 084201 (2007)

5th ESSRI, PSI

2019 Nov 28-29

Power ratio in MBL: ~ 4 vs. ~ 13

For more details please refer to the talk by Morten Jensen, 4th ESSRI

• At higher longitudinal emittance with EQT one needs lower longitudinal phase advance, i.e. one can have more acceleration

M. Eshraqi, J-M, Lagniel, "On the Choice of Linac Parameters for Minimal Beam Losses", IPAC 2013

By David V. Raju - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=50687312

- ESS started in a green field
 - Sustainability was part of the mandate
 - Sustainability was incorporated in the design from the beginning
- Major energy consuming components have been optimized for better energy management in close collaboration with local companies
- Even smaller energy savings have been implemented, saving also on the energy consumed for production
- Sustainability is bigger than our species

THANK YOU FOR YOUR ATTENTION

https://showyourstripes.info