

Frederik Wauters Johannes Gutenberg University Mainz

Precision Physics, Fundamental Interactions and Structure of Matter

muX Detector setup

Atomic Parity Violation

Not a new idea, as reviewed by:

PHYSICS REPORTS (Review Section of Physics Letters) 118, No. 4 (1985) 179-238. North-Holland, Amsterdam

THE NEUTRAL WEAK CURRENT IN MUONIC ATOMS

John MISSIMER*

Institut für Physik, Johannes-Gutenberg Universität, 6500 Mainz, Federal Republic of Germany and Swiss Institute for Nuclear Research,** 5234 Villigen, Switzerland

Leopold M. SIMONS

Kernforschungszentrum Karlsruhe, Institut für Kernphysik und Universität Karlsruhe, Institut für Experimentelle Kernphysik Karlsruhe, Federal Republic of Germany

Received August 1984

Can we measure APV directly with muons?

Atomic Parity Violation

Not a new idea, as reviewed by:

PHYSICS REPORTS (Review Section of Physics Letters) 118, No. 4 (1985) 179-238. North-Holland, Amsterdam

THE NEUTRAL WEAK CURRENT IN MUONIC ATOMS

John MISSIMER*

Institut für Physik, Johannes-Gutenberg Universität, 6500 Mainz, Federal Republic of Germany and Swiss Institute for Nuclear Research,"⁶ 5234 Villigen, Switzerland

Leopold M. SIMONS

Kernforschungszennrum Karlsruhe, Institut für Kernphysik und Universität Karlsruhe, Institut für Experimentelle Kernphysik Karlsruhe, Federal Republic of Germany

Received August 1984

Can we measure APV directly with muons?

Renewed interested:

- Muon specific force related to g-2. Is the muon special? \rightarrow Model specific
- Neutral currents are not tested with muons at low Q2! \rightarrow Generic

Testing Parity with Atomic Radiative Capture of μ^-

David McKeen and Maxim Pospelov Phys. Rev. Lett. **108**, 263401 – Published 29 June 2012

Constraints on muon-specific dark forces

Savely G. Karshenboim, David McKeen, and Maxim Pospelov Phys. Rev. D **90**, 073004 – Published 13 October 2014; Erratum Phys. Rev. D **90**, 079905 (2014)

Extending theories on muon-specific interactions

Carl E. Carlson and Michael Freid Phys. Rev. D **92**, 095024 – Published 23 November 2015

Why Z = 30

- Atomic parity violation (APV) in muonic atoms arises from an admixture of the opposite-parity 2p state in the 2s state, allowing for E1-M1 interference in the 2s-1s transition
- New physics > SM effect? E.g. a new vector force coupling to right-handed muons in light of recent muon anomalies.
- APV amplitude scales with $I/\Delta E_{2p-2s} \sim Z^{-4} \rightarrow low Z$ (<10) preferred with a % level SM effect
- At low Z, 2 photon decay 2s-1s transition dominates over the single photon transition
- At Low Z, 2s-2p Auger transitions depopulate the 2s level.
 - Strip all electrons \rightarrow low mass target \leftrightarrow high rate experiment
- $Z \approx 30$ as an optimal point/compromise
 - Branching ratio $2s-1s \approx 10^{-4}$
 - SM APV effect $\approx 10^{-4}$

Metastability of the Muonic Boron 2S State

- K. Kirch, D. Abbott, B. Bach, P. DeCecco, P. Hauser, D. Horváth, F. Kottmann, J. Missimer, R. T. Siegel, L. M. Simons, and D. Viel Phys. Rev. Lett. **78**, 4363 – Published 9 June 1997
- With 10^{12} on target (100 days at 100 kHz μ^{-})
 - The high-purity germanium detectors survive the neutron yield
 - Unity test SM APV within reach, new physics with a big APV effect primary goal

2S1S within muX

What is the 2sls within muX?

- Observe the single photon MI transition for the first time
 2017-2018
- Achieve a signal to background of O(1) on the transition

 ongoing
- Determine the optimal APV odd observable
- Determine the reach of a APV experiment
- Mainly a Mainz effort, but very close collaboration with the 226Ra efforts at PSI

Supported by DFG, 3 year project WA4157/1-1, PhD student next month

Frederik Wauters, PSI 2018

*S*1*S Observation in Kr* 2017 – 2018

*S*1*S Observation in Kr* 2017 – 2018

Energy

Backgrounds to 2s1s:

MC (ongoing)

Full MC to do it properly:

Start off with uniform angle distribution:

Full Cascade + electrons + neutrons:

2s1s observation with Zn v 2.0

Full MC to do it properly:

2s1s observation with Zn v 2.0

<u>3p2s coincidence:</u> we reproduce the effect!

2s1s observation with Zn v 2.0

Conclusions

- 2sls transition observed!
- Coincidence method is more complicated. 2017 detector angles were unfortunate.

- Continuous high-energy electron neutron background
 - further optimize timing
 - quantify with MC
 - add neutron detector

Run 2017: angles between detectors

- Further quantify with MC
- If then still look promising: 1 week Zn request at BVR

Future:

- Best S/B possible
- explore efficient Parity off observable