

The muX Project

Andreas Knecht Paul Scherrer Institute

muX collaboration meeting Paul Scherrer Institut 5. 11. 2018

Schedule

06:00	The muX project	Andreas KNECHT
	Auditorium / WHGA001, Peul Scherrer Institut	09:00 - 09:20
	Results of experimental campaigns	Alexander Albert SKAWRAN
	Auditorium / WHGA001, Paul Scherrer Institut	09:20 - 09:50
	Status of detection setup, data acquisition, autofill system, etc	Dr. Frederik WAUTERS
10:00	Auditorium / WHGA001, Peul Scherrer Institut	09:50 - 10:20
	Status of the 226-Ra target	Dr. Rcbert EICHLER
	Auditorium / WHGA001, Paul Scherrer Institut	10:20 - 10:50
	Coffee break	
11:00	Auditorium / WHGA001, Paul Scherrer Institut	10:50 - 11:20
	Status of theoretical calculaitons	Mr. Niklas MICHEL
	Auditorium / WHGA001, Peul Scherrer Institut	11:20 - 11:45
	Status of analysis of Re-185 and Re-187	Stella VOGIATZI
12:00	Auditorium / WHGA001, Paul Scherrer Institut	11:45 - 12:10
	Status of transfer simulations	Jonas NUBER
	Auditorium / WHGA001, Paul Scherrer Institut	12:10 - 12:35
	2s1s transition: towards an atomic parity violation experiment in muonic atoms	
	Auditorium / WHGA001, Peul Scherrer Institut	12:35 - 13:00
13:00	Lunch	
14:00	Auditorium / WHGA001, Peul Scherrer Institut	13:00 - 14:15

13:00	Lunch	
14:00	Auditorium / WHGA001, Peul Scherrer Institut	13:00 - 14:15
	MINIBALL - Status and Perspectives	
	Auditorium / WHGA001, Peul Scherrer Institut	14:15 - 14:45
	Miniball at PSI for muX project	Elisa RAPISARDA
15:00	Auditorium / WHGA001, Peul Scherrer Institut	14:45 - 15:15
	Target development 2019	Dr. Dennis RENISCH
	Auditorium / WHGA001, Paul Scherrer Institut	15:15 - 15:45
	Coffee break	
16:00	Auditorium / WHGA001, Paul Scherrer Institut	15:45 - 16:15
	Muon capture experiment at PSI	Mark SHIRCHENKO
	Auditorium / WHGA001, Paul Scherrer Institut	16:15 - 16:35
	Radioisotope separation at MEDICIS	Prof. Thomas COCOLIOS
	Auditorium / WHGA001, Paul Scherrer Institut	16:35 - 16:55
17:00	Open contribution 2	
	Audiiorium / WHGA001, Paul Scherrer Institut	16:55 - 17:15
	Open contribution 3	
	Audiiorium / WHGA001, Paul Scherrer Institut	17:15 - 17:35
	Visit of the beam line, area status, frame status	
18:00		
10.00	Auditorium / WHGA001, Peul Scherrer Institut	17:35 - 18:20
	Dinner	

Auditorium / WHGA001, Paul Scherrer Institut

- Some open slots at the end, should have enough time for discussions
- Probably stop for an extended coffee break at 4 pm for LTP seminar

Andreas Knecht

18:30 - 19:00

Lunch

⊳

≥

Dinner

- Dinner at Frohsinn in
 Würenlingen at 6:30 pm
- We should have enough cars and will meet at 6:15 pm in front of this building

Atomic parity violation in radium

- Weak interaction leads to parity violating effects in atomic transitions
 → enhanced in heavy atoms (∝Z³) due to large overlap with nucleus
- Extract Weinberg angle using precision atomic calculations
 → Needs knowledge of the radium charge radius with 0.2% accuracy
- Weinberg angle comparable to α and me in electromagnetism
 - Atomic parity violation fixes weak interaction properties at low momentum

Charge radii in nuclear physics

- Large efforts at ion beam facilities to determine charge radii
- Wealth of information on nuclear properties from laser spectroscopy
- Need electron scattering or muonic atom spectroscopy for absolute radii

PAUL SCHERRER INSTITU

What about radioactive atoms?

- Most of the stable isotopes have been measured with muonic atom spectroscopy
- In a few special cases also radioactive isotopes, e.g. americium
 - The paper describes the americium target as "modest weight of 1 gram"

Nowadays: 0.2 µg of open ²⁴¹Am allowed in experimental hall...

Cannot stop muons directly in microgram targets Need new method!

Our radioactive targets

α: 92% 244Pu, 8x10⁷ y

²⁴⁸Cm, 3x10⁵ y

- ▷ 5.5 µg target material allowed
- Gamma rate of ~400 kHz from all daughters
- Interest from atomic parity violation

▶ 32.6 µg target material allowed

Heaviest nucleus accessible

Transfer reactions

- Stop in 100 bar hydrogen target with 0.25% deuterium admixture
- Form muonic hydrogen μp
- Transfer to deuterium forming µd, gain binding energy of 45 eV
- Hydrogen gas quasi transparent for µd at ~5 eV (Ramsauer-Townsend effect)
- $\triangleright~\mu d$ reaches target and transfers to μRa
- Measure emitted X-rays from cascade

Inspired by work of Strasser et al. and Kraiman et al.

- Developed simulation to predict efficiency of transfer
- Momentum of beam determines stopping distribution with respect to the target
- Deuterium concentration determines speed of transfer but limits range due to µd+D₂ scattering

100 bar hydrogen target

- Target sealed with 0.6 mm carbon fibre window plus carbon fibre/titanium support grid
- Target holds up to 350 bar
- 10 mm stopping distribution (FWHM) inside 15 mm gas volume
- Target disks mounted onto the back of the cell

Entrance & veto detectors

- Entrance detector to see incoming muon
- Veto scintillators to form anticoincidence with decay electron

Germanium array

- 11 germanium detectors in an array from French/ UK loan pool, Leuven, PSI
- First time a large array is used for muonic atom spectroscopy

Experimental setup 2017/2018

History muX: 2015

- Using the Alcap DAQ and setup
- 25 and 75% Ge detectors
- Taking first spectra with
 - ▶ natPb
 - ▶ ^{nat}Re
 - ▶ ^{nat}Zn

UL SCHERRER INSTITU

History muX: 2016

- Own DAQ based on Struck digitiser
- 4 Ge detectors (but only two working)
- Measurement of

>Talk by Frederik

- ²⁰⁸Pb for calibration
- ▶ ^{nat}Zn
- First gold transfers (in 2nd attempt)

History muX: 2017

- 11 Ge detectors in an array
- Measurement of

 - ▶ Transfer to ²³⁸U
 - Transfer to Ar/Kr/Xe
 - ▶ ⁶⁵Zn

History muX: 2018

- 13 Ge detectors in an array (1 not working)
- Measurement of
 - ▶ Transfer to ²²⁶Ra, ⊂ ²⁴⁸Cm
 - Transfer to Kr
 - ▶ ¹⁹⁷Au, ¹⁷⁸Hf, ¹⁵⁹Tb

Miniball at PSI: 2019?

muX collaboration

A. Adamczak¹, A. Antognini^{2,3}, N. Berger⁴, T. Cocolios⁵, R. Dressler²,
C. Düllmann⁴, R. Eichler², P. Indelicato⁶, K. Jungmann⁷, K. Kirch^{2,3},
A. Knecht², J. Krauth⁴, J. Nuber², A. Papa², R. Pohl⁴, M. Pospelov^{8,9},
E. Rapisarda², D. Renisch⁴, P. Reiter¹⁰, N. Ritjoho^{2,3}, S. Roccia¹¹,
N. Severijns⁵, A. Skawran^{2,3}, S. Vogiatzi², F. Wauters⁴, and
L. Willmann⁷

¹Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland ²Paul Scherrer Institut, Villigen, Switzerland ³ETH Zürich, Switzerland ⁴University of Mainz, Germany ⁵KU Leuven, Belgium ⁶LKB Paris, France ⁷University of Groningen, The Netherlands ⁸University of Victoria, Canada ⁹Perimeter Institute, Waterloo, Canada ¹⁰Institut für Kernphysik, Universität zu Köln, Germany ¹¹CSNSM, Université Paris Sud, CNRS/IN2P3, Orsay Campus, France

Andreas Knecht

Backup

Scattering cross sections

- Scattering on deuterium does not show a Ramsauer-Townsend minimum
- Need to be careful to not have too much deuterium in the gas mixture

DAQ

- Struck SIS3316 digitizer: 16 channel, 14 bit, 250 MHz
- Firmware for online pulse processing

Detection of APV

Weak Interaction in Atoms Interference of EM and Weak interactions

Benefit of Ra

K. Jungmann, L. Willmann, Workshop on Muonic Atom Spectroscopy (2016)

Other results:

 $45.9 \cdot 10^{-11} iea_0 \left(-Q_w/N\right) \quad (\text{R. Pal}\,\textit{et al., Phys. Rev. A 79, 062505 (2009), Dzuba\,\textit{et al., Phys Rev. A 63, 062101 (2001).)}$

Need reliable charge radius at <0.2% accuracy for atomic theory</p>

185Re \$ 187Re spectra

- Hyperfine structure + lowlying nuclear levels
- Highly complicated spectra
- Need very detailed theoretical calculations to extract nuclear properties

Extraction of quadrupole moments

PAUL SCHERRER INSTITUT

Measuring some other targets

- Decided to measure some samples that are useful:
 - Gold: Has never been properly measured & published
 - Terbium/hafnium: Ideal test cases to extract quadrupole moments from 5-4 transitions
- Gold coin was a present to Finn ;-), Klaus brought terbium and hafnium from Cologne

Elemental analysis with negative muons

Safety

Implemented full safety features for handling radioactive targets

Muonic cascade

- Muonic cascade after transfer favors higher np-1s transitions
- Experimentally confirmed for many low- and medium-Z atoms

Muonic cascade

- One publication that claims that enhancement is not seen in high-Z atoms
- Troubling as would like to predict our yields
- Additionally need to do a cascade calculation to predict the relative strengths of all the HFS states

Хе

Bertin et al., Phys. Lett. 74A, 39 (1979)

Energy (keV)

:<:<

Measurements with no

- Performed measurements in pure Ar, Kr, Xe and corresponding mixtures with H₂
- Effect of enhanced np-1s clearly seen also in Xe
- Detailed yields under investigation

Transfer Probability in Gold

Puzzle of deuterium concentration

PAUL SCHERRER INSTITUT