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Preface 
 

This booklet is meant to be a quick route to learning about modern X-ray science. It is 
based on the original idea of Prof. Jens Als-Nielsen and Prof. Friso van der Veen to 
establishing a training course at the Swiss Light Source for students, so that they can get 
hands-on experience about many of the basic features of X-ray science as it is carried out 
at a synchrotron X-ray facility. During a 6 week stay at Paul Scherrer Institute in the 
spring of 2009, Prof. Jens Als-Nielsen and the staff at the X05 beam line put most of the 
course together, resulting in a booklet, which we have revisited and updated to better suit 
the scope of the course on Materials Research with Synchrotron Radiation currently held 
by Prof. L. J. Heyderman. 
 All of the technical descriptions can be found on the Swiss Light Source homepage, 
whereas the present booklet gives the background for the exercises, including how the 
student should prepare herself/himself for the practical part of the course.  
The data from the exercises are included, and from the Internet link 
henke.lbl.gov/optical_constants/ you can in fact simulate many of these data. 
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Introduction 
 
The practical part of the course Materials Research with Synchrotron Radiation consists 

of two days that you will spend at a the Optics Beamline (X05) at the Swiss Light Source 

at the Paul Scherrer Institute in Villigen.  

You will perform the following experiment: 

• Scattering from water and ice 

In the following you will find general information on the interaction of X-ray with matter 

and specific information on how to perform the above experiment.  
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Experiment : Scattering from water and ice 
 
Before looking in detail at the practical steps of the experiment, let us recall a few more 

concepts about X-ray interactions, and the differences between solid and liquid samples. 

 
Atomic and molecular form factors 
The scattering cross section from an atom with Z electrons is not just 2

0rZ , because the 

electrons in an atom do not scatter independently of each other as they do in an electron 

gas. Furthermore, it is not 2
0 )( rZ  since all the electrons do not scatter in phase because 

the size of the atom is comparable to the X-ray wavelength.   

The simplest model of the atom for the purpose here is just an electron cloud with the 

electron density )(r , normalized so that rr 3)( dZ = . We then have to add the 

amplitudes of scattered waves from different volume elements in the electron cloud. 

 
The wavevectors of the incident and the scattered beam are k and k’, respectively.  The 

difference is the scattering vector Q = k-k’. The two volume elements, represented by 

white and blue coloured squares separated by the vector r, do not scatter in phase.  The 

incident ray hits the white volume element later than it hits blue volume element.  The 

path length difference is r projected onto k, i.e. rk̂ , where the superscript “hat” 

indicates a unit vector.  The phase difference is 2p times the ratio of the path length 

difference to the wavelength , i.e. it is simply rk .  Similarly for the scattered wave: the 

scattered wavelet from the blue element is ahead of that from the white element, the 

phase difference being rk ' . Note that in the drawing rk  is negative, but rk ' is 

positive, so the total phase difference is rQrkk =)'( . The net result is that the 
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scattering length from the entire electron cloud is rrQ rQ 3
0 )()( derA i= .  In units of 

)( 0r , the scattered amplitude is just the Fourier transform of the electron density, which 

is also called the atomic form factor.  

rrQ rQ 30 )()( def i=  

In the small angle limit, Q®0, the atomic form factor approaches Z, the atomic number. 

For reference values, see International Tables of Crystallography and Table 4.1 in 

“Elements of Modern X-Ray Physics ”.  

However, when the X-ray photon energy is close to an absorption edge in the atom, the 

cloud density model of the atom turns out to be too simple. In that case the phase shift is 

no longer exactly 180o and also the modulus of the atomic form factor is changed. This is 

written as the following: 
0( , ) ( ) '( ) ''( )f f f if= + +Q Q  

where f’ and f’’ are known as the dispersion corrections to f 0. A convenient link for 

getting the energy dependence of atomic scattering factors at Q=0 is 

http://henke.lbl.gov/optical_constants.  In some cases they show a simple but dramatic 

effect of the dispersion corrections. 

2. Molecules  
The scattering length of a molecule composed of atoms with atomic form factors fj and 

situated at positions rj is  

( ) ( ) ji
mol j

j
f f Q e= Q rQ  

However, in trying to measure the molecular scattering length from a gas there is a 

complication compared to the monoatomic gas. The molecule, in contrast to an atom, is 

not isotropic.  Therefore the angle between the scattering vector Q and an axis in the 

molecule varies from molecule to the molecule in the gas, and one has to carry out an 

orientational average procedure. Let's consider the simplest case, a linear molecule of two 

atoms. The scattering amplitude from the two atoms separated by r is 
(2)

1 2( ) iA f f e= + Q rQ  , and the intensity for a particular orientation of the molecule is 
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2 2(2)
1 2 1 2+ 2 iI f f f f e= + Q r .  Therefore, the scattering length of the molecule, averaged 

over all possible orientations, is given by 
orient.av.

ie Q r  : 

𝑒"𝑸.𝒓 = 	
𝑒"𝑸.𝒓 	sin 𝜃 𝑑𝜃𝑑𝜑
	sin 𝜃 𝑑𝜃𝑑𝜑

= 𝑠𝑖𝑛𝑐(𝑄𝑟)
 

 

One can then generalize to the case of N atoms in the molecule, with the distance 

between atom i and j being denoted rij . Letting ij ijx Q r , we have the result: 

2 2 2( )
orient.av. 1 2

1 2 12 1 3 13 1 1

2 3 23 2 2

+
          2 sinc( ) 2 sinc( ) 2 sinc( )
                                    2 sinc( ) 2 sinc( )
                                                

N
N

N N

N N

I f f f
f f x f f x f f x

f f x f f x

= +

+ + + +
+ + +

1 1,             2 sinc( )N N N Nf f x+

 

This general result, obtained by Debye in 1915, can be illustrated for the CF4 molecule 
(The C-F bond length is 1.38 Å). There are 5 atoms, but the four Fluorine atoms are 
identical and have the same mutual distance rFF, whereas the distance from the central 
Carbon atom to any of the F atoms is rFC . 

  

 

In the figure below we illustrate the difference between the molecular form factor for a 

fixed orientation of the CF4 relative to the scattering vector Q (dashed-dotted blue line), 

and the orientational averaged form factor (solid green line). Although the oscillations are 

to some extent washed out by the orientational averaging it is still possible to determine 

the CF bond length from the gas scattering experiment. 

 

 

 

Problem 3.  Show that the tetragonal structure implies  
One therefore gets  

 
where . 
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3. Crystals  
To complete the discussion of adding the scattering from different entities, we shall also 

here consider the diffraction from crystals, i.e. samples that contain a macroscopic 

number of molecules.  The key feature of a crystal is that a basic, microscopic structure 

called the unit cell  is repeated a macroscopic number of times on a lattice. The lattice 

points are represented by lattice vectors 1 1 2 2 3 3n n n n= + +R a a a , where ai are the primitive 

lattice vectors and nj are integer numbers. Any lattice point can be defined by nj, i.e. an 

integer sum of these lattice vectors. A crystal is made up of many “unit cells”, which are 

the basic building block of the crystal, and are repeated at each lattice point. The unit cell 

consists of n atoms at positions rj with scattering amplitude fj(Q) and its scattering 

amplitude is  . .
1

( ) ( ) ji
u c j

j
f f Q e

=

= Q rQ . The total scattering amplitude of the crystal is 

therefore found by summing up over the lattice points: 

. .( ) ( )
N

i
crystal u cA f e= nQ R

n
Q Q  

The sum in this equation, a lattice sum, encompasses a macroscopic number of terms, 

which are all complex numbers distributed on the unit circle in the complex plane.  In 

general they will tend to cancel each other, unless nQ R  magically happens to be a 

multiple of 2p for all nR .  In that case the lattice sum is simply N .  The “magic” 

condition is that Q=Gh , a lattice vector in reciprocal space that is defined by reciprocal 

lattice vectors 𝒂𝒋∗	analogous to the lattice vectors for the crystal in real space. The 

reciprocal lattice vectors are defined by 𝑎:∗ = 2𝜋(𝑎=×𝑎?)/𝑉, and the two other 

corresponding cyclic relations, where 𝑉 = 𝑎: ∙ (𝑎=×𝑎?) is the unit cell volume. 

Therefore we have the reciprocal lattice vectors 𝑮𝒉 = ℎ:𝒂𝟏∗ + ℎ=𝒂𝟐∗ + ℎ?𝒂𝟑∗  . 

A crystal acts as an amplifier of the unit cell scattering amplitude.  The amplifier gain is 

enormous, N, but works only when the scattering vector coincides with a reciprocal 

lattice vector. This is known as Bragg reflection. 
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Ewald sphere 

The mathematical formulation of a Bragg reflection, where 𝑸 = 𝑮J, may be better 

understood by a picture, the Ewald sphere.  The idea is that the spectrometer is set at a 

particular incident monochromatic energy, or wavevector k, and the detector can be set at 

any scattering angle 2q.  The scattering is elastic, so the scattered wavevector k’ will be 

on a sphere with radius k  which is called the Ewald sphere.  The reciprocal lattice is 

associated with the sample, so by mechanically rotating the sample around several axes 

one can rotate the reciprocal lattice around so that a given reciprocal lattice vector hG

lands on the Ewald sphere. This is illustrated in the figure below, for the sake of 

simplicity in only two dimensions.  The reciprocal lattice points are indicated by black 

spots, except for the origin, which is red. In the figure, the (3,1) reflection appears to be 

on the Ewald sphere.  Note that the Ewald sphere has a certain shell thickness, which is 

the energy bandwidth of the monochromator. A typical bandwidth is of order 10-4 for a Si 

monochromator crystal, but 10-2 for a multilayer monochromator. 

 

k 

k’ 

3,1 
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Powder diffraction.   

Whilst for a single crystal sample, the orientation has to be chosen carefully in order to 

scatter off a Bragg reflection, a powder sample has a large number, maybe of order 

millions, of small single crystals with random orientations. This means that for any 

sample orientation some, maybe thousands, of these crystals will be oriented for (h,k,l) 

Bragg reflection, i.e. the glancing angle from the incident beam to the lattice planes 

happens to be the Bragg angle fulfilling 2 sinhkld= . These Bragg reflected beams will 

be incident on a flat detector at distance L in a circle (the Debye-Scherrer circle) with a 

radius R given by tan 2 /R L= . Another set of Miller indices (h,k,l) yields a different d-

spacing, i.e. a different scattering angle, and thus yields a different circle on the detector. 

An example is shown below for the organic salt AgBehenate.  The crystal unit cell of 

AgBehenate has one very long dimension (about 6 nm) due the length of the hydro-

carbon chain of behenic acid, whereas the hydrocarbon chains pack laterally with a 

spacing of around 0.5 nm. The innermost Bragg reflections will therefore be concentric 

circles of equidistant radii. The figure below show an experimental diffraction pattern 

recorded with an area detector. One can immediately identify, for example, the 3rd order 

ring. 

 
36.5m
m 

85 
mm 

3’rd order 
ring 

20 
CH2 

A
g 

A
g 

58.38 
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Diffraction from water/ice 

In our experiment we will use a Eiger area detector, with a pixel size of 75 µm. The Eiger 

detector will first be used to acquire diffraction images from a liquid sample, in the 

present case simply water.  A water drop is hanging from a thin capillary by virtue of the 

surface tension. The diameter of the drop is larger than the X-ray beam, so it provides a 

window-less sample. The figure below on the left shows an example of a typical 

diffraction pattern from water. Subsequently, one can blow cold nitrogen gas onto the 

water drop so that it freezes to ice. The ice is actually a powder of crystallites, albeit with 

much fewer crystals than the AgBehenate sample, and you observe the Bragg spots on 

the Eiger detector. An example of a typical diffraction picture is shown in the right figure 

below. 
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15 keV, 40 mm distance, water Same, but frozen to ice 
(NB colorbar up by 10x) 

Problem 1: Find the Bragg angle and the Debye-Scherrer radius for the  
reflections for  using the following data: 
AgBehenate , d=58.38 Ang @ 10 keV=1.24 Å.   
Sample-detector distance = 250 mm 
4q ≈ 32/250 or q=32 mrad ;  
𝑛𝜆 = 2𝑑 𝑠𝑖𝑛 𝜃 → 𝑛 = (2 ∗ 	58.38 ∗ 0.032	/	1.24)	→ n~3 

Problem 2: From the link henke.lbl.gov/optical_constants find the transmission of 
1mm water at 10 keV. 


