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The best of two worlds

o QED enables extremely precise predictions: 

o (hydrogen) spectrum

o (Hyper-)fine structure 

o magnetic moments

o …

 “the jewel of physics” (Feynman)

Penning traps

o Single ion in free space – perfect 

spectroscopy conditions 

o Solely static fields

o Access to many properties of the 

ion: 

o Mass (via cyclotron frequency)

o Magnetic moments (via Larmor

frequency)

o Excitation energies

o …

Quantum Electrodynamics 

(QED) in simple systems

???
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Perfect match for testing fundamental physics 



How strong can it get ?
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Nothing comes without a price…

Typical energy scales are very diverse:

 Ionisation energy (208Pb81+): up to 100 keV

 During creation (EBIT):   ~ Megakelvin ( 500eV )

 After trapping and cooling: mK-K (40μeV)
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Measure the free cyclotron frequency

to determine the magnetic field 

ħ𝜔𝐿
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• Reduced cyclotron 

frequency:

• Magnetron drift

frequency:

• Axial frequency:

2222

zc    Free cyclotron frequency

~2π∙ 27 MHz

~ 2π∙ 9 kHz

~ 2π∙ 700 kHz

Trap eigenfrequencies

(Brown-Gabrielse invariance theorem)

Our measurement tool - the Penning trap

B

• Larmor frequency: ~ 2π∙ 110 GHz
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 Cryogenic temperatures (4.2K)

 Vacuum better than 10-17 mbar

 basically no rest gas

Experimental setup
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Oscillating ion

induces image charges

in trap electrodes

Tank circuit with high

impedance

Rp = 50 MΩ

Q = 3200 

A

Cryogenic ultra low-

noise amplifier

en = 400pV/ √Hz

in ≤ 10fA/ √Hz

Fast Fourier Transformation to

obtain the frequency information

Ion is resistively cooled until it

reaches thermal equilibrium with

the tank circuit

Eigenfrequency Detection
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Oscillating ion

induces image charges

in trap electrodes

Tank circuit with high

impedance

Rp = 50 MΩ

Q = 3200 

A

Cryogenic ultra low-

noise amplifier

en = 400pV/ √Hz

in ≤ 10fA/ √Hz

Fast Fourier Transformation to

obtain the frequency information

Ion is resistively cooled until it

reaches thermal equilibrium with

the tank circuit

Eigenfrequency Detection

Precision improvement ~ factor 10
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Continuous Stern-Gerlach effect:

∆𝝂𝒛 ≈
𝑩𝟐𝒈𝝁𝑩

𝟒𝝅𝟐𝒎𝒊𝒐𝒏𝝂𝒛

Magnetic bottle

ferromagnetic

ring

B

e

𝟏𝟐𝐂𝟓+ 𝟐𝟖𝐒𝐢𝟏𝟑+ 𝟒𝟎Ar𝟏𝟑+ 𝟐𝟎𝟖𝐏𝐛𝟖𝟏+

𝚫𝝂𝒛 3.1 Hz 1.3 Hz 312 mHz 156 mHz

axial frequency offset between 

“up” and “down” spin orientation 

The continuous Stern-Gerlach Effect
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Precision trap 

 Very homogeneous magnetic field

 Measurement of the frequency ratio Γ

Analysis trap

 Magnetic inhomogeneity

 Detection of spin direction

Creation trap

 In-trap ion creation of highly-charged ions

 Miniature EBIT/S

~
1
4
 c

m

7
 m

m Triple Penning trap system
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Selected g -factor Results

[S. Sturm et al., Nature 506, 467-470 (2014)]

Hydrogenlike 12C5+ Electron mass

[A. Wagner et al., PRL 110, 033003 (2013)]

Lithiumlike 28Si11+

Most stringent test of

relativistic 3 electron

interactions

Hydrogenlike 28Si13+ Most stringent test of QED 

in strong fields
[S. Sturm et al., PRL 107, 2 (2011)]

[S. Sturm et al., PRA 87, 030501(R) (2013)]

[F. Koehler-Langes et al., Nature Comm. 10246 (2016)]

Lithiumlike
48Ca17+ / 40Ca17+

Relativistic recoil
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The electron’s mass

Electron mass from ultra-high precision 

g-factor of hydrogenlike carbon:

ion

ionL
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Theory (Pachucki et. al) x 10-12

Experiment
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me=0.000 548 579 909 067(16) u

Order of magnitude 

improved value ! Nature 506, 467-470, 2014 

The electron’s mass

Electron mass from ultra-high precision 

g-factor of hydrogenlike carbon:

ion
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History of  our experiments on HCI

1999/2000: First  g-factor 

measurements on HCI in Mainz

2011-2014: up to 28Si13+ , 40,48Ca17+: 

Stringent tests of BS-QED and 

electron mass

2013: Start of ALPHATRAP @ MPIK 

Heidelberg

2015: Redesign of the Mainz 

experiment → LIONTRAP

Mass measurements 

on light ions (proton, 

deuteron, …)

g-factor measurements in 

heavy HCI

~ 1995: Project start in Mainz

(Werth, Kluge, Quint et al)

Redesign / upgrade

2017: proton mass 

2018/2019: First online g-factor and 

laser spectroscopy with HCI
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Ultra-precise q/m measurements
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R.S. Van Dyck et al. @ UW E. Myers et al. @ FSU

+ Binding Energy [4]

[2] S. L. Zafonte et al., Metrologia 52, 280 (2015)

[1] F. Heiße et al., PRL 119, 033001 (2017)

[3]

[2]

?

?? ?
5 σ

Deviation

[5] S. Hamzeloui et al, PRA 96, 060501 (2017)

[4] Yan et al., PRA 67, 062504 (2003)

[3] E. Myers et al., PRL 114, 013003 (2015)

12C 3He

THD HD

Puzzle of  Light Atomic Masses
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mp = 1.007 276 466 583 15 29 𝑢
𝛿mp

mp
= 3.2 ∙ 10−11

[PRL  119, 033001 (2017)]

Results (see talk by Fabian Heisse (Tue))
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[1] PRL 73, 1481 (1994). [2] Ph.D. thesis, Stockholm University (1997).

[3] AIP Conf. Proc. 457, 101 (1999). [4] Phys. Scr. 66, 201 (2002). [5] PRA 78, 2514 (2008).



Back to g - factors …
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12C5+

QED of  Bound States
28Si13+

40Ca17+
208Pb81+

Range accessible 

in the Mainz HCI 

experiment

u
p
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o
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 ~
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 k
e

V

(Zα)~0.6

 Probe validity of QED in the

strongest fields

 Precision experiment

with heavy, highly

charged ions

 Strongly coupled

(Zα≈1) electron, beyond

the Furry picture

 Extract nuclear 

structure information

16O7+

Range accessible 

by ALPHATRAP
u

p
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Experimental Setup
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Experimental Setup
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Capture electrodes
• Potential switching
• Dynamic ion capture/storage

Precision trap
• 18mm diameter
• Homogeneous B-field: measure 𝚪 = 𝝎𝑳/𝝎𝒄

• Compensation ring for PT: improved 
B-field homogeneity  

Analysis trap
• 6mm diameter
• Ferromagnetic ring electrode: spin detection

Beryllium trap
• Be ions storage & detection

Microwave horn
• mm – wave  coupling
• Laser access

Double Penning trap
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The 40Ar13+ ground-state system

• 2p1/2 ground state is split into the 2 Zeeman substates at 4T 

• Energy :  ∝ 𝑍2 for principal transitions ,∝ 𝑍3 for HFS transitions ∝ 𝑍4 for 

FS transitions

– In Ar13+ the fine structure reaches the optical regime

𝜏 ≈ 9.5 ms
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Talk by Ioanna Arapoglou (Tue) 
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The next leap in precision – coherent

differences
• Goal: directly address individual (small) g-factor contributions

– Isotope shifts δg/g ~10-7

– Similar Z elements δg/g ~10-3

• Magnetic field fluctuations drop out 

in the correlation

10/20/2019 PSI 2019

y

x

Magnetic field fluctuations drop out 

in the correlation

P(ȁ ۧ↓ ȁ ۧ↓ → ȁ ۧ↓ ȁ ۧ↑ + ȁ ۧ↑ ȁ ۧ↓ ~ cos((𝜔1−𝜔2)𝑡) + … 

• Potentially achievable precision

(related to the total g-factor)  δg/g < 10-14

40Ca19+

48Ca19+



Summary

 g-factor determinations with HCI have 

allowed rigorous tests of most QED 

contributions

 Fundamental constants such as the 

electron and proton masses have 

been determined, α is targeted

 ALPHATRAP can eventually provide 

and measure the initially envisaged 

heavy HCI
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ALPHATRAP team: I. Arapoglou, A. Weigel, T. Sailer, A. Egl, R. Wolf, M. Höcker, B. Tu, F. Hahne, K. Blaum 

LIONTRAP team: F. Heiße, S. Rau, F. Köhler-Langes, W. Quint, G. Werth, K. Blaum
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