QED Tests in Strong Fields and Fundamental Constants from Precision Measurements on Highly Charged Ions

Sven Sturm

MPIK Heidelberg PSI 2019

The best of two worlds

Penning traps

- Single ion in free space perfect spectroscopy conditions
 - o Solely static fields
- Access to many properties of the ion:
 - Mass (via cyclotron frequency)
 - Magnetic moments (via Larmor frequency)
 - Excitation energies
 - 0 ...

Quantum Electrodynamics (QED) in simple systems

- QED enables **extremely** precise predictions:
 - o (hydrogen) spectrum
 - (Hyper-)fine structure
 - o magnetic moments
 - 0 ...
 - "the jewel of physics" (Feynman)

Perfect match for testing fundamental physics

How strong can it get?

Œ

How strong can it get?

Ø

Nothing comes without a price...

Typical energy scales are **very diverse**:

Ionisation energy (²⁰⁸Pb⁸¹⁺):

During creation (EBIT): ~ Megakelvin (500eV)

➢ After trapping and cooling: mK-K (40µeV)

up to 100 keV

g – factor measurement in a Penning trap

Our measurement tool - the Penning trap

Trap eigenfrequencies

- Reduced cyclotron frequency:
- Magnetron drift frequency:
- Axial frequency:
- Larmor frequency:

- ~2*π*· 27 MHz
- ~ 2π· 9 kHz
- ~ 2π· 700 kHz
- ~ 2π[.] 110 GHz

> Free cyclotron frequency
$$\omega_c^2 = \omega_+^2 + \omega_-^2 + \omega_z^2$$

(Brown-Gabrielse invariance theorem)

Experimental setup

10/20/2019

in trap electrodes

 $R_{p} = 50 M\Omega$ ų́ = 3200

 $e_n = 400 \text{pV} / \sqrt{\text{Hz}}$ $i_n \le 10 \text{fA} / \sqrt{\text{Hz}}$

obtain the frequency information

PSI 2019

The continuous Stern-Gerlach Effect

"up" and "down" spin orientation

$$\Delta v_z \approx \frac{B_2 g \mu_B}{4 \pi^2 m_{ion} v_z}$$

	¹² C ⁵⁺	²⁸ Si ¹³⁺	40 Ar $^{13+}$	²⁰⁸ Pb ⁸¹⁺
Δv_z	3.1 Hz	1.3 Hz	312 mHz	156 mHz

PSI 2019

10/20/2019

Triple Penning trap system

Selected g-factor Results

Hydrogenlike ²⁸Si¹³⁺

[S. Sturm et al., PRL 107, 2 (2011)] [S. Sturm et al., PRA 87, 030501(R) (2013)]

Most stringent test of QED in strong fields

Lithiumlike ²⁸Si¹¹⁺

[A. Wagner et al., PRL 110, 033003 (2013)]

Most stringent test of relativistic 3 electron interactions

Electron mass

Hydrogenlike ¹²C⁵⁺

[S. Sturm et al., Nature 506, 467-470 (2014)]

Lithiumlike ⁴⁸Ca¹⁷⁺/⁴⁰Ca¹⁷⁺

Relativistic recoil

[F. Koehler-Langes et al., Nature Comm. 10246 (2016)]

40Ca17+/48Ca17+

The electron's mass

Electron mass from ultra-high precision *g*-factor of **hydrogenlike carbon**:

Theory (Pachucki et. al) x 10⁻¹²

wgion m mg $2\omega \omega m g_{inn}$ Experiment

The electron's mass

Electron mass from ultra-high precision *g*-factor of **hydrogenlike carbon**:

$$m_e = \frac{g_{theo}}{2} \frac{\omega_c}{\omega_L} \frac{e}{q_{ion}} m_{ion}$$

Order of magnitude improved value !

 $m_{\rm e}/m_{\rm e}^{\rm this \, work} - 1$ (parts per billion)

Nature 506, 467-470, 2014

History of our experiments on HCI

Puzzle of Light Atomic Masses

Puzzle of Light Atomic Masses

Results (see talk by Fabian Heisse (Tue))

PRL **73**, 1481 (1994). [2] Ph.D. thesis, Stockholm University (1997).
 AIP Conf. Proc. **457**, 101 (1999). [4] Phys. Scr. **66**, 201 (2002). [5] PRA **78**, 2514 (2008).

Back to g - factors ...

Probe validity of QED in the strongest fields

- Precision experiment with heavy, highly charged ions
- Strongly coupled
 (Zα≈1) electron, beyond
 the Furry picture
- Extract nuclear
 structure information

Experimental Setup

Double Penning trap

Capture electrodes

- Potential switching
- Dynamic ion capture/storage

Precision trap

- 18mm diameter
- Homogeneous *B*-field: measure $\Gamma = \omega_L / \omega_c$
- Compensation ring for PT: improved *B*-field homogeneity

Analysis trap

- 6mm diameter
- Ferromagnetic ring electrode: spin detection

Beryllium trap

• Be ions storage & detection

Microwave horn

- mm wave coupling
- Laser access

- 2p_{1/2} ground state is split into the 2 Zeeman substates at 4T
- Energy : $\propto Z^2$ for principal transitions , $\propto Z^3$ for HFS transitions $\propto Z^4$ for FS transitions
 - In Ar¹³⁺ the fine structure reaches the optical regime

- 2p_{1/2} ground state is split into the 2 Zeeman substates at 4T
- Energy : $\propto Z^2$ for principal transitions , $\propto Z^3$ for HFS transitions $\propto Z^4$ for FS transitions
 - In Ar¹³⁺ the fine structure reaches the optical regime

- 2p_{1/2} ground state is split into the 2 Zeeman substates at 4T
- Energy : $\propto Z^2$ for principal transitions , $\propto Z^3$ for HFS transitions $\propto Z^4$ for FS transitions
 - In Ar¹³⁺ the fine structure reaches the optical regime

- 2p_{1/2} ground state is split into the 2 Zeeman substates at 4T
- Energy : $\propto Z^2$ for principal transitions , $\propto Z^3$ for HFS transitions $\propto Z^4$ for FS transitions
 - In Ar¹³⁺ the fine structure reaches the optical regime

The next leap in precision – coherent differences

- Goal: directly address individual (small) g-factor contributions
 - Isotope shifts δg/g ~10⁻⁷
 - Similar Z elements $\delta g/g \sim 10^{-3}$
- Magnetic field fluctuations drop out in the correlation

Magnetic field fluctuations **drop out** in the correlation

 $P(|\downarrow\rangle|\downarrow\rangle \rightarrow |\downarrow\rangle|\uparrow\rangle + |\uparrow\rangle|\downarrow\rangle \sim \cos((\omega_1 - \omega_2)t) + \dots$

 Potentially achievable precision (related to the total g-factor) δg/g < 10⁻¹⁴

Summary

ALPHATRAP team: I. Arapoglou, A. Weigel, T. Sailer, A. Egl, R. Wolf, M. Höcker, B. Tu, F. Hahne, K. Blaum **LIONTRAP team:** F. Heiße, S. Rau, F. Köhler-Langes, W. Quint, G. Werth, K. Blaum

- g-factor determinations with HCI have allowed rigorous tests of most QED contributions
- Fundamental constants such as the electron and proton masses have been determined, α is targeted
- ALPHATRAP can eventually provide and measure the initially envisaged heavy HCI

