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What are muonic atoms?

Exotic atoms
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Electron replaced 
with a muon

Can be used as a precision probe for the nucleus
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Ordinary atoms
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muon more sensitive to the nucleus

Hydrogen-like systems
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e-The proton charge radius is measured from: 
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    eH spectroscopy 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Other light muonic atoms
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CM

Theoretical derivation of TPE

Using perturbation theory at second order 
one obtains the expression for TPE 
up to order 
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ZZ
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0)

★ Next-to-next to leading-order term, related to monopole and  
   quadrupole response functions…
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Consider the Coulomb force in the intermediate states  
Naively                      , actually logarithmically enhanced 
 

Related to the dipole response function

Friar (1977), Pachucki (2011)

 Coulomb term

Take the relativistic kinetic energy in muon propagator 
Related to the dipole response function

 Relativistic terms

 Consider finite nucleon-size by including their charge distributions and obtain terms, e.g.,

 Finite nucleon-size corrections

�(1)R1 = �8⇡mr(Z↵)2�2(0)

Z Z
d3Rd3R0|R�R0|


2

�2
⇢pp0 (R,R0)� �⇢np0 (R,R0)

�

Theoretical derivation of TPE
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Theoretical derivation of TPE

�
TPE

= �A
Zem

+ �N
Zem

+ �A
pol

+ �N
pol

�A
pol

= �(0)D1

+ �(1)R3

+ �(1)Z3

+ �(2)R2 + �(2)Q + �(2)D1D3

+ �(0)C

+�(0)L + �(0)T + �(0)M + �(1)R1 + �(1)Z1 + �(2)NS

�AZem = ��(1)Z3 � �(1)Z1

Need to calculate                and related uncertainties.�TPE

Friar an Payne (‘97)
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Uncertainties comparison

Atom Exp uncertainty on ΔE2S-2P
Uncertainty on TPE prior to the discovery 

of the proton radius puzzle

 µ2H 0.003 meV 0.03 meV*

 µ3He+ 0.08 meV 1 meV

µ4He+ 0.06 meV 0.6 meV

µ 6,7Li++ 0.7 meV 4 meV

*Leidemann, Rosenfelder ’95 using few-body methods
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HN CM



Sonia Bacca 13

Ab Initio Nuclear Theory  

H|�i� = Ei|�i�

H = T + VNN (⇤) + V3N (⇤) + . . .

• Solve the Schrödinger equation for few-nucleons

HN

HN CM

Hyper-spherical harmonics expansions and Lorenz integral 
transform method for A=3,4,6,7

Barnea, Leidemann, Orlandini  PRC 61 (2000) 054001

 For A=2 we use an harmonic oscillator expansion

Efros, et al., JPG.: Nucl.Part.Phys.  34 (2007) R459 



Sonia Bacca 13

Ab Initio Nuclear Theory  

H|�i� = Ei|�i�

H = T + VNN (⇤) + V3N (⇤) + . . .

• Solve the Schrödinger equation for few-nucleons

HN

HN CM

Hyper-spherical harmonics expansions and Lorenz integral 
transform method for A=3,4,6,7

Barnea, Leidemann, Orlandini  PRC 61 (2000) 054001

 For A=2 we use an harmonic oscillator expansion
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• We will use nuclear interactions derived from traditional potentials (AV18+UIX)  
    and from chiral effective filed theory (at various orders)
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Systematic expansion 

π
(q/Λ)0

(q/Λ)3
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LO
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Ab Initio Nuclear Theory  
Chiral effective filed theory  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Systematic expansion 
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(q/Λ)0

(q/Λ)3

(q/Λ)4

(q/Λ)2

LO

NLO

N2LO

N3LO

Future: lattice QCD? 
Now fit to experiment

LEC fit to experiment  - NN sector -
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Lab. Energy [MeV]

N3LO

NLO
N2LO

Epelbaum et al. (2009)

Ab Initio Nuclear Theory  
Chiral effective filed theory  



Sonia Bacca 15

Muonic Deuterium

AV18 in agreement with Pachucki (2011)+ Pachucki, Wienczek (2015)

J. Hernandez et al, Phys. Lett. B 736, 344 (2014)
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Deuteron radius puzzle
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Pohl et al., Science 353, 669 (2016)

�E2S�2P = �QED +AOPEhr2c i+ �TPE

  Hernandez et al., PLB 736, 334 (2014) 
Pachucki (2011)+ Pachucki, Wienczek (2015)
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5.6�

µH+iso: rp from µH and deuterium isotopic shift r2d -r2p: Parthey et al., PRL 104 233001 (2010) 

Pohl et al., Science 353, 669 (2016)
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µH+iso: rp from µH and deuterium isotopic shift r2d -r2p: Parthey et al., PRL 104 233001 (2010) 
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J. Hernandez et al., Phys. Lett. B 778, 377 (2018)

µ2H

Only sightly mitigate the “small” proton radius puzzle (2.6 to 2 𝝈)

Order-by-order chiral expansion

Theory, PLB 2014

Statistical and systematic uncertainty analysis
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Higher order corrections in 𝛼
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Three-photon exchange

Pachucki et al., Phys. Rev. A 97 062511 (2018)

(Z𝛼)6 correction, negligible
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Kalinowski, Phys. Rev. A 99 030501 (2019)
One the many 𝛼6 corrections, supposedly the largest

Consistent within 1𝜎 
solves the small deuteron-radius puzzle

�TPE = �1.750+14
�16 meV

�TPE = �1.7638(68) meV

Theory

Exp

Large deuteron-radius puzzle still unsolved 

Three-photon exchange

Pachucki et al., Phys. Rev. A 97 062511 (2018)

(Z𝛼)6 correction, negligible
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S. Li Muli et al.

Muonic Lithiums, unpublished
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Summary and Outlook

• Ab initio calculations have allowed to microscopically compute TPE and to 
 substantially reduce uncertainties  

• Independently on the nature of the puzzle, these calculations are needed to 
support any spectroscopic measurement with muonic atoms 

• In the future we will investigate the hyperfine splitting of muonic deuterium 
and the Lamb shift in muonic Lithium and Beryllium atoms
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Uncertainties sources • Numerical  
• Nuclear model 
• Isospin symmetry breaking  
• Nucleon-size 
• Truncation of multiples  
• η-expansion
• expansion in  Z𝛼
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4He

An example 

 S.B. and Saori Pastore, Journal of Physics G.: Nucl. Part. Phys. 41, 123002 (2014) 
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