

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Testing charged lepton flavor universality with pions

Douglas Bryman University of British Columbia &TRIUMF

3 unconfirmed anomalies that involve Muons

Possible connection to Lepton Flavor Universality

- Proton radius puzzle (6 σ)→May be Solved?
 μ-H atom result differs from e-H and e-scattering
- Muon g-2 (~3+ σ) Deviation from theory -- new physics?
- B → D*τ ν/B → D*μν, B → K*μ μ/ B → K*ee R(D^(*)),R (K*): (3.8 σ, 2.6 σ.); O(10%) deviations from Universality? Quarks and leptons must both involved!

The Flavor Puzzle

• Quark, lepton flavors not conserved

Unexplained observations (no theory of flavor):

Three ("identical") generations

Diverse mixing schemes – flavor changing interactions

Huge mass differences between and within the generations (mass hierarchy)

Universality of interactions

CP violation - where is the anti-matter in the universe?

Symmetry between lepton and quark sectors (GUT, scale?)

10/22/2019

Leptons, Flavor Universality & Violation

Electron	Thompson, Townsand, Wilson 1896
Muon	Nedermeyer, Anderson 1937
Tau	Perl et al. 1974

Conserved Lepton Number Konopinski, Mahmoud 1953 Separate lepton "numbers (flavors)" Pontecorvo 1959 Lepton Flavor Universality Pontecorvo 1946

Neutrino oscillations:

Pontecorvo 1957 → Davis, Kamioka, SNO, OPERA, MINOS... 1960-2001

Lepton flavor is not conserved Neutrinos have (small) mass and mix

10/22/2019

Charged Lepton Flavor Universality

Experiments compare expectations assuming $g_e=g_{\mu}=g_{\tau}$

Light meson/tau decay Precision: O(10⁻³)

But no real target for violation.

10/22/2019

Other Universality Tests

<O(0.2%) effects

$\frac{\tau}{\mu}$ –	$\rightarrow evv$ $\rightarrow evv$	for τ - μ Univer	sality and $\frac{\tau}{\mu}$	$\frac{\rightarrow \mu v v}{\rightarrow e v v} \text{for } \tau$	-e Universality
$rac{ au}{\pi}$	$\frac{\rightarrow \pi v}{\rightarrow \mu v} \text{for } \tau - \mu \text{ Universality and } \frac{\tau \rightarrow \pi v}{\pi \rightarrow e v} \text{for } \tau - e$		e Universality		
-		$\Gamma_{\tau \to e} / \Gamma_{\mu \to e}$	$\Gamma_{\tau \to \pi} / \Gamma_{\pi \to \mu}$	$\Gamma_{\tau \to K} / \Gamma_{K \to \mu}$	$\Gamma_{W\to\tau}/\Gamma_{W\to\mu}$
-	$ g_{ au}/g_{\mu} $	1.0011(15)	0.9962(27)	0.9858(70)	1.034(13)
-		$\Gamma_{\tau \to \mu} / \Gamma_{\mu \to e}$	$\Gamma_{W \to \tau} / \Gamma_{W \to e}$	$\Gamma_{\tau \to \pi} \ / \ \Gamma_{\pi \to e}$	
-	$ g_{ au}/g_{e} $	1.0030(15)	1.031(13)	1.0044 (60)	

Pich 2013, DB 1992

How to interpret universality/non-universality observations?

Speculations :

- Sterile neutrinos
- New non-SM couplings?
 - 1000 TeV scale with couplings O(1)
 - Charged Higgs H^+
 - Leptoquarks
 - New Z'
 - Hidden sector ...

Could precise measurements of 1st, 2nd generation decays be used to distinguish between models explaining 3rd generation effects?

What are the connections with lepton flavor violation and lepton number violation?

$\pi^+ \rightarrow e^+ \nu$ LFU Tests: Sensitivity to High Mass Scales

New Pseudoscalar interaction

0.1 % measurement $\rightarrow \Lambda \sim 1000 \text{ TeV}$

Assuming non-SM Higgs' couplings. Marciano...

Others

-Leptoquarks -Excited gauge bosons -Compositeness -SU(2)xSU(2)xSU(2)xU(1) -Hidden sector

R-parity violating SUSY

Ramsey-Musolf...

10/22/2019

Possibly the most accurately calculated decay process involving hadrons. Structure-dependent radiation included (v. small).

2015 PIENU

Current Result (PDG): $R_{e/\mu}^{\exp \pi} = 1.2327 \pm 0.0023 \times 10^{-4}$ (±0.19%) Future: PIENU, PEN $\leq 0.1\%$

Structure-dependent radiation significant but not accounted for. Current Result (PDG) NA62/KLOE: $R_{e/\mu}^{\exp K} = 2.488 \pm 0.009 x 10^{-5}$ (±0.4%) Future: NA62, TREK: 0.2%

10/22/2019

A. Aguilar-Arevalo¹, M. Aoki², M. Blecher³, D.I. Britton⁴, D. vom Bruch^{5,13}, D.A. Bryman^{5,6}, S. Chen⁷, J. Comfort⁸, L. Doria^{6,14}, S. Cuen-Rochin^{5,6}, P. Gumplinger⁶, A. Hussein^{9,6}, Y. Igarashi¹⁰, S. Ito^{2,11}, S.H. Kettell¹², L. Kurchaninov⁶, L. Littenberg¹², C. Malbrunot^{5,15}, R.E. Mischke⁶, T. Numao⁶, D. Protopopescu⁴, A. Sher⁶, T. Sullivan^{5,16}, D. Vavilov⁶

- 1. Instituto de Ciencias Nucleares, UNAM
- 2. Osaka University
- 3. Virginia Tech.
- 4. University of Glasgow
- 5. University of British Columbia
- 6. TRIUMF
- 7. Tsinghua University
- 8. Arizona State University
- 9. University of Northern British Columbia
- 10. KEK
- 11. Okayama University
- 12. Brookhaven National Laboratory
- 13. LNHE, CNRS, Sorbonne and Paris Diderot Universities
- 14. Johannes Gutenberg University Mainz
- 15. CERN
- 16. Queen's University

TRIUMF

Canada, China, Japan, Mexico, UK, US

10/22/2019

Exp. Method

- •Pions stop in an active target.
- •Out-going positrons are detected by a calorimeter.
- •Tag decay modes by calorimeter energy.

Exp. Method

- •Pions stop in an active target.
- •Out-going positrons are detected by a calorimeter.
- •Tag decay modes by calorimeter energy.

 Low-energy tail of π_{e2}: should be corrected.
 Use target energy to "blind" the result: hidden random target-energy-dependent inefficiency.

PIENU Detector

Acceptance Wire Chamber

10/22/2019

Tail Correction

- Special positron runs to understand the behavior of low-energy tail.
- Perfect agreements between data and MC.
- Typical Tail-Correction factor is:
 1.0261 ± 0.0002(stat) ± 0.0005(syst)

$R_{e/\mu}^{\exp\pi}$ dependance on E_{cut}

PIENU Uncertainties

Error	PIENU 2010	PIENU goal
Statistical	0.19%	0.07%
Time Spectrum	0.04%	0.04%
Tail Correction	0.12%	0.06%
Others	0.07%	0.04%
Total	0.24%	< 0.1%

Current Result PIENU: $R_{e/\mu}^{\exp \pi} = 1.2344 \pm 0.0030 x 10^{-4}$: $\frac{g_e}{g_{\mu}} = 0.9996 \pm 0.0012$

Full Data Sample: $10^7 \pi^+ \rightarrow e^+ \nu$ Events Precision Goal: $\pm 0.1\%$ (Coming Soon!)

10/22/2019

"LFU Violation" Example: Massive Sterile Neutrinos e.g. $\pi^+ \rightarrow l^+ v_{e4}$

$$\nu_{\ell} = \sum_{i=1}^{3+n_s} U_{\ell i} \, \nu_i \; ,$$

- Extra peak in 2-body spectrum
- Effect on branching ratio $R^{\pi}_{e/\mu} = \Gamma(\pi^{+} \rightarrow e^{+}v_{e})/\Gamma(\pi^{+} \rightarrow \mu^{+}v_{e})$

 $\overline{R}_{e/\mu}^{\pi} = \frac{R_{e/\mu}^{\pi \exp}}{R_{e/\mu}^{SM}} = \frac{(1 - |U_{e4}|^2) + |U_{e4}|^2 \ \overline{\rho}(m_e, m_{v4})}{(1 - |U_{\mu4}|^2) + |U_{\mu4}|^2 \ \overline{\rho}(m_\mu, m_{v4})} \sim (1 - |U_{e4}|^2) + |U_{e4}|^2 \ \overline{\rho}(m_e, m_{v4})$

$$|U_{\ell 4}|^2 < \frac{\bar{R}_{\ell/\ell'}^{(M)} - 1}{\bar{\rho}(\delta_{\ell}^{(M)}, \delta_{\nu_4}^{(M)}) - 1}$$

Ratio of kinematic factors

$$\bar{\rho}(x,y) = \frac{\rho(x,y)}{\rho(x,0)} = \frac{\rho(x,y)}{x(1-x)^2}$$

10/22/2019

Decay	$(m_{\nu_4})_{\bar{\rho}_{max}}$	$ar{ ho}_{max}$
$\pi^+ \to e^+ \nu_4$	80.6	1.105×10^4
$K^+ \to e^+ \nu_4$	285	1.38×10^{5}
$D^+ \to e^+ \nu_4$	1.08×10^3	1.98×10^6
$D_s^+ \to e^+ \nu_4$	1.14×10^3	2.20×10^6
$B^+ \to e^+ \nu_4$	3.05×10^3	1.58×10^7
$\pi^+ \to \mu^+ \nu_4$	3.46	1.00
$K^+ \to \mu^+ \nu_4$	263	4.13
$D^+ \to \mu^+ \nu_4$	1.07×10^3	47.3
$D_s^+ \to \mu^+ \nu_4$	1.13×10^3	52.4
$B^+ \to \mu^+ \nu_4$	3.05×10^3	371

Large kinematic enhancements possible at larger mass due to absence of helicity suppression

10/22/2019

D. Bryman PSI2019

19

arXiv:1904.03269, PLB submitted

 $\pi^+ \rightarrow e^+ V_{e4}$

A. Aguilar-Arevalo et al. Phys. Rev. D 97, 072012 (2018)

 $\pi^+ \rightarrow e^+ V_{e4}$ $\left|U_{e4}\right|^2$ vs m_{v4}

"LFU Violation" due to Massive Sterile Neutrinos e.g. $\pi^+ \rightarrow e^+ v_{e4}$ $\frac{R_{e/\mu}^{\exp \pi}}{R_{e/\mu}^{SM}} = \frac{(1 - |U_{e4}|^2) + |U_{e4}|^2 \ \overline{\rho}(m_e, m_{v4})}{(1 - |U_{\mu4}|^2) + |U_{\mu4}|^2 \ \overline{\rho}(m_\mu, m_{v4})} \sim (1 - |U_{e4}|^2) + |U_{e4}|^2 \ \overline{\rho}(m_e, m_{v4})$

Sterile neutrinos could range in mass from eV to GUT scale; constraints from oscillations, cosmology, HEP.... Possible correlation with LFV, LNV....

R. Shrock and D.B. 2019

10/22/2019

How to improve experimental precision by another order of magnitude to match theory?

$$\mathbf{R}_{e/\mu}^{th} = (1.2353 \pm 0.0002) x 10^{-4} \pm 0.016\%$$

10 x more precise than experiments!

 $\pi^+ \rightarrow e^+ \nu$ Experiments -- stopped pions

- CERN (1958) 6 events
- Chicago (1960) *magnetic spectrometer*
 - 1st precise measurement ±6%
- Columbia (1964) *Nal(Tl) crystal*; ± 2%
- TRIUMF (1986, 1992, 2015 \rightarrow **PIENU**) \rightarrow *NaI(TI)/CsI crystals*
 - $\pm 0.24\% \rightarrow 0.1\%$? 10⁷ events
- PSI (1994, \rightarrow **PEN**) BGO \rightarrow CsI crystals >10⁷ events
 - $\pm 0.4\% \rightarrow <0.1\%?$
- Future Experiment: LXe Calorimeter?
 - $\pm 0.1\% \rightarrow <0.01\%?$

New $\pi^+ \rightarrow e^+ \nu$ Experiment with LXe?

- Π⁺ Beam: 75±0.3 MeV/c 10⁵ Hertz
- Tracking target SciFi, SiPMs
- LXe calorimeter SiPM readout
 - 40 X₀
 - Δt~50 ps, ΔE~1%
- Sensitivity, Precision:
 - 10⁸ events
 - ±0.015% in 1 Yr.

Conclusions: Tests of Lepton Flavor Universality with Pions (and other particles)

• Rare μ , π and K decays have unique and important roles to play in the search for new physics involving exotic effects like *Flavor Universality* and Lepton Flavor Violation --- especially sensitivity to very high mass scales.

• New π/K/B results expected soon from PIENU, PEN, NA62, and LHCb BESSIII, BELLE-II

•Important connections with searches for sterile neutrinos, high mass scale physics and L(F/N)V tests ($0\nu\beta\beta$, K $\rightarrow\pi\mu^+\mu^+$, K $\rightarrow\pi e^+ e^+$, $\mu\rightarrow e\gamma$, $\mu^-Z\rightarrow e^-Z$, $\mu^-Z\rightarrow e^+$ (Z-2), $\mu\rightarrow 3e$, muonium-antimuonium...)