¹Van Swinderen Institute, University of Groningen, The Netherlands NL-eEDM: ²Department of Physics & Astronomy and LaserLaB, VU Amsterdam, The Netherlands ³Nikhef, National Institute for Subatomic Physics, Amsterdam, The Netherlands

Search for a permanent electric dipole moment on the electron (eEDM) using BaF molecules

T. B. Meijknecht^{1,3} *, A. Boeschoten^{1,3}, A. Borschevsky^{1,3}, A. Touwen^{1,3}, A. Zapara^{1,3}, H. L. Bethlem^{1,2}, K. Esajas^{1,3}, K. Jungmann^{1,3}, L. Willmann^{1,3}, M. C. Mooij^{2,3}, M. Denis^{1,3}, P. Aggarwal^{1,3}, P. A. B. Haase^{1,3}, R. G. E Timmermans^{1,3}, S. Hoekstra^{1,3}, V. R. Marshall^{1,3}, W. Ubachs², Y. Yin^{1,3} and Y. Hao^{1,3}

* t.b.meijknecht@rug.nl

Electron Electric Dipole Moment (eEDM)

$$H = -(\mu ec{B} + dec{E}) \cdot rac{ec{S}}{ec{S}ec{ec{S}}ec{e$$

Measurement Sensitivity

ZΛ

In electric field: causes spin precession. Tests Standard Model extensions into TeV scale.

Experimental Setup Phase 1: Supersonic Source + Interaction zone Supersonic beam source **Optical readout** Interaction zone

