$\begin{array}{l} Study \mbox{of } Future \ 3D \ Calorimetry \ Based \ on \ LYSO \ or \ LaBr_3: Ce \ Crystals \ for \ High \ Precision \ Physics \end{array}$

A. $PAPA^{1,2}$, <u>P. SCHWENDIMANN^{1,3}</u>

¹Paul Scherrer Institute, ²University of Pisa and INFN, ³Swiss Federal Institute of Technology Zurich

DETECTOR LAYOUT

Couple a scintillating crystal on both ends to SiPMs. Aim to detect $\mathcal{O}(50 \,\mathrm{MeV})$ photons [1].

THE COMPONENTS					
SiPM	Siz (mr	xe Activation Activatio Activation Activation Activation Activation Activation Activa	m^2 Numbre Area Numbre Area Numbre Numbre Numbre Number	ber Fill tels (%)	PDE (%)
Hamamatsu S13360-6025PE	$7.35 \times$	6.85 6.0	$\times 6.0$ 5760	0 47	25
sensL MicroFJ-600357	$\Gamma SV \qquad 6.13 \times$	6.13 6.07	× 6.07 22 29	02 75	38 to 50
Scintillator	Density $\rho (g/cm^3)$	Light Yie LY (ph/k	$\begin{array}{ll} \text{ld} & \text{Decay T} \\ \text{eV} & \tau \text{ (ns)} \end{array}$	ime I	Ladiation Lenth X_0 (cm)
$LaBr_3(Ce)$	5.08	63	16		2.1
LYSO	7.1	27	41		1.21
NaI(Tl)	3.67	38	245		2.59
BGO	7.13	9	300		1.12

The small thickness of the SiPMs has hardly any impact on the impinging photon. The granular readout allows for geometrical reconstruction.

Small LYSO and LaBr₃(Ce) crystals are already in use for sub-MeV purposes (e.g. PET). Recent progress in the crystal growing process made a prototype for the range between $10 \,\mathrm{MeV}$ to $100 \,\mathrm{MeV}$ feasible.

THE SIMULATION

Monte Carlo simulation based on GEANT4. Custom code to take care of the SiPM responses and the reactions of the DAQ. Waveforms are generated based on data taken with SiPMs in discussion.

Reconstruction Algorithms:

- Energy: Sum the integrated charge for all waveforms.
- **Time:** Sum all waveforms on front and back respectively. Use constant fraction to estimate a time for both. Reconstruct hit time based on these two values.
- Position perpendicular to crystal axis: Centre of light distribution on front and back. Use linear approximation.

SIMULATIONS OF AVAILABLE SIZES

Considering hits in the central region of the crystal:

350

300

• **Position along crystal axis:** Use times of front and back readout along with the logarithm of the charges. Use linear approximation.

 $D = 9 \text{ cm}, L = 20 \text{ cm}, LaBr_2:Ce$ $\sigma/\mu = 2.52(8)$ % $D = 9 \text{ cm}, L = 20 \text{ cm}, LaBr_2:Ce$ $\sigma = 4.17(8) \text{ mm}$

Significant differences only for charge resolution. It is limited by energy leakage through lateral sides, thus LYSO performs better due to its smaller radiation length and Molière radius.

A time resolution around 30 ps and a position resolution around 3 mm perpendicular to the crystal axis are suggested by simple fits.

THINKING BIGGER

Consider LYSO and $LaBr_3(Ce)$ crystals with a size of 10 Molière radii and 15 radiation lengths irradiated with 55 MeV photons.

SPREAD OUT PHOTONS

Assume divergent photons to cover the whole front face:

CONCLUSIONS

Simulations suggest that a calorimeter consisting of a LYSO crystal coupled to SiPMs could provide simultaneously an energy resolution below 2%, a time resolution around 30 ps and a position resolution better than 5 mm with currently available crystals for 55 MeV photons. Such a detector would be at the precision forefront of calorimetry and has to be considered for future experiments at the precision frontier [2, 3].

THE PROTOTYPE

Selection based on the simulation:

Time resolution is estimated to $\mathcal{O}(30 \,\mathrm{ps})$. Position resolution along and perpendicular to the crystal axis to $\mathcal{O}(5 \,\mathrm{mm})$.

Once larger crystals get available, $LaBr_3(Ce)$ can fully benefit from its higher light yield and might be the better candidate.

Contact: patrick.schwendimann@psi.ch

q (a.u.)

Loss of charge/energy resolution is observed for the 55 MeV photons, due to events close to the lateral side. Reconstruction in the other variables is more or less unaffected.

Cuts:

- MC Truth: Cut events that are close to the lateral side. Used as reference.
- Rec. Pos: Cut events reconstructed close to the lateral side.
- Skewness: Cut events where most of the light is collected at large radii.

• LYSO (10 cm length, 7.5 cm diameter) • Hamamatsu MPPC S13360-6025PE.

About to place the orders with industry. Once fully assembled and crosschecked, the prototype will be tested as auxiliary detector for the CEX calibration of the MEG II detector [4].

REFERENCES

[1] A. Papa, P. Schwendimann, NIM A **936** (2018), 130 [2] A. M. Baldini et al. arXiv:1812.06540v1 [hep-ex] [3] G. Cavoto et al. Eur. Phys. J. C 78 (2018), 37 [4] A. M. Baldini et al. (MEG II Collaboration), Eur.

Phys. J. C 78 (2018), 380