Considerations for a caesium magnetometer array for the n2EDM experiment

Duarte Pais, on behalf of the nEDM collaboration
duarte.pais@psi.ch – Paul Scherrer Institut, ETH Zürich

The n2EDM experiment

The apparatus consists of two identical chambers, where the spins of ultra cold neutrons (UCN) precess in the following configuration of electric and magnetic fields, with frequencies $\omega_{n,11}$ and $\omega_{n,12}$. A neutron electric dipole moment

$$d_n = \frac{\hbar}{4E} (\omega_{n,11} - \omega_{n,12})$$

may then provide insight into the baryon asymmetry of the universe, as a source of CP violation, and into new physics [2].

Solution to d_{false}^{Hg-n}

An array of caesium magnetometers (CsM) with an optimised geometry allows the calculation of the magnetic field gradients $G_{l,m}$ [4] and of

$$d_{false}^{Hg-n} = \frac{\hbar \gamma n \gamma H}{2 c^2} \sum_{l=1}^{\infty} G_{l,m=0} \rho n_{l,m=0}$$

with the goal of

$$\Delta d_{false}^{Hg-n} \leq 4 \times 10^{-29} \text{ e} \cdot \text{cm}.$$

This is based on the assumption that

$$\sum_{l=1}^{\infty} G_{l,m=0} \rho n_{l,m=0} = \langle xB_x + yB_y \rangle.$$

Magnetic contaminants

The inevitable contamination of magnetic dipoles (e.g. magnetisable dust, screws, etc.) in the n2EDM experiment dictates that

$$-\frac{\hbar \gamma n \gamma H}{2 c^2} (x B_x + y B_y) = \frac{\hbar \gamma n \gamma H}{2 c^2} \sum_{l=1}^{\infty} G_{l,m=0} \rho n_{l,m=0}$$

Why 133Cs?

- Saturated vapour at room temperature
- Well resolved hyperfine levels
- No need for buffer gas
- 30 ms T2 time assured by anti-relaxation coating

Problem

A mercury comagnetometer (HgM), samples the same volume as the UCN. Its reading compensates the effect of B fluctuations on $\omega_{n,11}$ and $\omega_{n,12}$... but...

this correction leads to a systematic shift of Eq. 1 by d_{false}^{Hg-n} (Eq. 3) [3,4], since

$$\langle \vec{B} \rangle - \langle |\vec{B}| \rangle = \frac{\omega_{n,H}}{\gamma_H} \frac{\omega_n}{\gamma_n} \neq 0$$

Expected performance of CsM array

Amplitude at PD

The chosen sensor measures $|\vec{B}|$ and is of Bell-Bloom type [5,6]. Amplitude modulated and linearly polarised light resonant on the appropriate electronic transition during the pumping regime leads to the precession of the aligned spin ensemble. A typical signal recorded by a photodiode (PD) looks like:

References