Beta spectrum shape measurements using backscatter recognition

L. De Keukeleere1, K. Bodek2, L. Hayen1, K. Lojek2, M. Perkowski2, D. Rozpedzik2, N. Severijns1, S. Vanlangendonck1

1Instituut voor Kern- en Stralingsfysica, KU Leuven, B-3001 Leuven, Belgium
2Marian Smoluchowski Institute of Physics, Jagiellonian University, 30348 Krakow, Poland

Why?

- High-energy frontier
- Low-energy frontier
 - Complementary constraints on Scalar(S) and Tensor(T) currents through Effective Field Theory (EFT)

What?

- Signal height versus voltage
 - 114In \rightarrow 114Sn
 - 114In \rightarrow 114Sn is a good candidate to probe WM

Challenges?

- 114In \rightarrow 114Sn is sensitive to both BSM physics Fierz and uncharted SM physics Weak Magnetism

How?

- Probing Beyond SM
- Probing SM
 - Influence of QCD on WI?
 - Why?

Scintillator

Plastic: EJ-204 (Ejen technology)
Cylinder: h=30mm, r=100mm
4 PMTs: XP3330 (Photonis)

Advantages
- Low backscattering coefficient (~2-7%)
- Low amount of bremsstrahlung (<10%)5

Disadvantages
- Low energy resolution (~5-20%)
- High non-uniformity in light collection efficiency (~15-20%)

Multi-Wire Drift Chamber (MWDC)

- Recognize back-scattered electrons as V-tracks
- Reduce background from gamma's and cosmic muons
- Correct for gain non-uniformity by reconstructing the scintillator hit position

Tracking in X-Y plane

Monte-Carlo simulations

- Geant4
 - Detector geometry
 - Particle tracking
- Garfield++
 - Ionization and electron drift
 - Signal readout

Goal: Interface Geant4 and Garfield++
and fully simulate events in order to support the measurements[6]

Results

2D-gain map
- Scintillator calibration with Blumth-207:
 - Conversion peaks at ~500 keV and 2 peaks at ~1 MeV
- Model of the detector response includes a linear term with offset, a noise resolution and a Fano factor:
 \[ADC = a \cdot V + b \]
 \[\sigma_{ADC}^2 = \sigma_n^2 + F_v \cdot E \]
- Divide scintillator surface in a grid of squares
- Fit experimental spectrum with simulated spectrum using a Markov Chain Monte Carlo (MCMC) method
- Extract gain for each location and map the detector surface

Signal height versus voltage
- Average signal height from muonic data for:
 - Different gas mixtures
 - Increasing Voltage
- Very good agreement with simulation
- Remaining discrepancy due to inaccuracies in Penning effect

Preliminary results
- Fairly good agreement between experiment and simulation but systematic effects arise at the % level
 - Origin: the track reconstruction algorithm is energy dependent!!!
 - Work in progress...

Conclusions

- The beta spectrum shape is sensitive to both BSM physics Fierz and uncharted SM physics Weak Magnetism
- 114In \rightarrow 114Sn is a good candidate to probe WM
- Back-scattering and non-uniform light collection efficiency are monitored by a MWDC
- Proof of principle: 2D gain map of the scintillator surface
- Preliminary comparison of the 114In spectrum with simulation: systematics at the % percent level due to the track reconstruction algorithm: requires further analysis

References

- [2] L. Hayen and N. Severijns, High precision analytical description of the allowed beta spectrum of 114In
- [1] T. Bhattacharya et al, Probing novel scalar and tensor interactions from (ultra)cold neutrons to the Standard Model edge.

[5a] Technical note: G. Soti, Search for a tensor component in the weak interaction Hamiltonian, PhD thesis (2013)
[6a] L. Hayen and N. Severijns, High precision analytical description of the allowed beta spectrum of 114In
[7a] A. Hayes and P. Vogel, Reactor neutrino spectra.