SMI

The ASACUSA hydrogen hyperfine structure measurement

OAW

AUSTRIAN ACADEMY OF SCIENCES

Andreas Lanz*

(on behalf of the ASACUSA collaboration[†])

*Stefan Meyer Institute for Subatomic Physics, Vienna, Austria

Symbolic illustration of the

CPT-transformation [1].

Motivation

CPT-Theorem:

Particles and antiparticles have exactly same or opposite properties (e.g. mass, lifetime, magnetic moment, el. charge).

Matter-Antimatter-Discrepancy:

After Big Bang same amount of matter and antimatter, but today's universe is made of matter.

Possible solution in CPT-invariant QFT (Sakharov conditions):

- C & CP violation
- Baryon number violation
- Interactions out of thermal equilibrium

Standard Model Extension: (SME)

Theoretical framework for systematic search of CPT- & lorentzviolation.

Adding additional terms to the SM-Lagrangian.

Hyperfine Splitting:

SME can change energy levels of ground-state hyperfine structure (GS-HFS) in antihydrogen. Can be measured by Rabi spectroscopy (principle see at experiment).

Breit-Rabi diagram of Antihydrogen GS-HFS in an external static B-field and the possible zerofield lift of degeneracy of the SME (left circle). The transitions of interest are the σ_1 - and π_1 transitions, which turn low-field seekers (LFS: states having lower energy at lower B-field) to highfield seekers (HFS: states having lower energy at higher B-fields) [2].

Experiment

The experiment is in principle a Rabi-experiment and is tested with a hydrogen beam.

Particles coming from a source O get polarised in a B-field gradient (A). Spin flips are induced by an oscillating B-field perpendicular to a static B-field (C). Spin flipped particles are deflected by B-field gradient (B). At transition frequency a drop in intensity is observable at detector (D) [3].

Photography of the hydrogen beam experiment [2]

Cavity (left) and B-field configuration in the cavity (right): σ_1 -transition can be induced by parallel configuration of the oscillating and static B-field; π_1 transition is induced by perpendicular fields. The cavity can induce both transitions because of a 45° arrangement of the static and oscillating fields.

Evaluation with 2-level calculation

Resonance fit:

Resonance fit (red curve) done with a bivariate spline interpolation using data simulated by solving optical Bloch eq. for 2-level system.

1.42040570 1.4204058

Evaluation:

Extrapolating measured transition frequencies at several static B-fields (ν_{σ} , ν_{π}) to zero B-field transition frequency v_0 :

Result extrapolation to zero B-field: Top: σ_1 -transition data Bottom: π_1 -transition data

Transition probability calculated with 4-level system

Top: Simulation of transition probability on the oscillating B-field amplitude and the frequency at a static B-field of 46 mG (left) and 23 mG (right). LFS-probability is the probability of measuring a LFS at the detector.

Bottom: Projection of the transition probability at an oscillating B-field of 1µT.

Shift

Shift of 2-level- vs. 4-level calculation: The simplified evaluation using a 2-levelsystem shifts the transition frequency result at small static B-fields.

Error dependence on magnetic field 0.5 1 1.5 2 2.5 3 3.5 4 P field (C)

Error dependence on B-field: The uncertainty of the hyperfine transition frequency using 4-level system increases with smaller static magnetic field due to increasing sensitivity on the oscillating B-field.

Correcting data

Results

1.4204061 1.4204060 1.4204059 1.4204058 1.4204057

Applied correction:

Applying this shift as a correction on the π_1 – (left) and σ_1 – (right) – data. The GS-HFS results evaluated by the π_1 – transition shift towards the literature value, while the σ_1 – transition evaluation is hardly effected by this correction.

Summary & Outlook

- Spectroscopy apparatus works as expected and can be used for antihydrogen measurement.
- 45° angle between static and oscillating B-field to induce σ_1 and π_1 transition in the same cavity should be avoided because of the interference between the two transitions.
- Small static B-fields should be avoided.
- Additional B-field measurement should be performed to compensate possible residual fields.

References

- [1] M. Diermaier. Determination of the Hydrogen Ground-State Hyperfine Splitting in a Beam and Perspectives for Antihydrogen. PhD thesis, Technical University of Vienna, 2016.
- [2] A. Lanz. Hydrogen Hyperfine Structure Measurements using the σ_1 and π_1 Transitions: Evaluation & Correction. Master's thesis, University of Vienna, 2019.
- [3] I. I. Rabi, S. Millman, P. Kusch and J. R. Zacharias. The molecular beam resonance method for measuring nuclear magnetic moments. the magnetic moments of $_3Li^6$, $_3Li^7$ and $_9F^{19}$. Phys. Rev., 55:526-535, Mar 1939

This project has been supported by the Austrian Science Fund FWF, Doctoral program No. W1252-N27 and by the Austrian Science Fund FWF project No. P32468-N36 † http://www.cern.ch/ASACUSA

