BRAND: Search for BSM physics at TeV scale by exploring the transverse polarization of electrons emitted in neutron decay

1) M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
2) H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
3) Institute of Nuclear and Radiation Physics, KU Leuven, Belgium
4) Institut Laue-Langevin, Grenoble, France
5) Dep. of Physics and Astronomy, North Carolina State University, Raleigh, USA

Measurement of the angular correlations in the decay of polarized cold neutrons with full kinematic reconstruction of events

\[\frac{d^3\Gamma}{d\Omega_{\text{e}}d\Omega_{\text{p}}d\Omega_{\text{v}}} \sim 1 + a_1 \frac{q}{E_{\text{e}}} + b_1 \frac{m_e}{E_{\text{e}}} + \left(\frac{1}{J} \right) \left[A \frac{p}{E_{\text{e}}} + B \frac{q}{E_{\text{e}}} + D \frac{p}{E_{\text{e}}} \times \frac{q}{E_{\text{e}}} \right] \]

Components foreseen in Standard Model

If \(J = 0 \) → access to coefficients \(X (= H, L, N, R, S, U, V) \), which are linear combination of BSM - scalar and tensor couplings:

\[X = X_{SM} + X_{EM} + c_{R, S} Re(S) + c_{R, T} Re(T) + c_{I, S} Im(S) + c_{I, T} Im(T) \]

Significant improvement of constrains on \(Re(S), Re(T), Im(S), Im(T) \) if precision of \(H, L, N, R, S, U, V \) measurement: \(5 \times 10^{-4} \) → impact on constrains of leptoquark exchange model, R-parity violating MSSM and parameters of EFT.

Experimental Setup

For reconstruction of decay kinematics: electron 4-momentum, proton 4-momentum and electron transverse polarization to be measured

Detection of electrons:
- track reconstruction in MWDC
- energy measurement in plastic scintillator
- transverse polarization measurement via Mott scattering

Detection of protons:
- acceleration in electric field (-25 kV)
- conversion into bunch of electrons in LiF foil
- energy information from hit position and ToF in plastic scintillator

One sector (1/6) of BRAND ultimate setup

Light readout principle of proton detector

Experimental Issues

Prototipe of MWDC (BRAND-0)