0. Abstract

We have developed calibration methods of VUV(Vacuum Ultraviolet)-sensitive MPPCs of MEG II liquid xenon gamma-ray detector. Gain, Excess Charge Factor(ECF) and Photon Detection Efficiency(PDE) have been constantly monitored under high intensity muon beam environment.

1. MEG II Experiment

\[\mu \rightarrow e\gamma \] decay search at PSI.
• Forbidden in Standard Model
• Observable in BSM(\[Br(\mu \rightarrow e\gamma) \sim 10^{-14}\]).

Kinematics

Key concepts[1]
• High intensity \(\mu \) beam available at PSI.
• \(7 \times 10^7 \mu/s \)
• High resolution detectors for \(\varepsilon^+ \) and \(\gamma \)

2. Liquid Xenon Gamma-ray Detector

LXe scintillator coupled with VUV-sensitive photosensors.

4760 Photosensors
• 4092 MPPC(Multi-pixel Photon Counter)
• 668 PMT(Photo Multiplier Tube)

In 2018, 640 MPPCs have been operated under high intensity muon beam environment.
• The number of MPPCs is limited due to the limited readout channels.
• Over voltage: 7 V, Temperature: 165 K

Photosensor Calibration

O(1)% precision is essential for detector performance.

\[N_{\text{photon}} = \text{Charge}/(G \times ECF \times PDE) \]

Gain
Excess Charge Factor
Cross-talk
Photo Detection Efficiency

3. Gain & ECF

Method
Measure subtle blue LED light.
Gain = Charge of 1 photo-electron.

\[\text{Gain} = Q_{\text{p.e.}}/Q_{\text{p.e.}} \]

Excess Charge Factor(ECF):
Deviation from Poisson distribution

\[ECF = Q_{\text{observed}}/Q_{\text{Poisson}} \]

\[Q_{\text{Poisson}} = \text{Gain} \times (-\ln(R_{\text{p.e.}})) \]

Result

Gain & ECF were successfully measured for all MPPCs.
Gain: \(1.6 \times 10^9/\text{p.e.} \)
ECF: 1~2.5(depending on production lot)
• Relative uncertainty: 3~5%

Stability under muon beam environment has been checked.

4. Photon-detection efficiency(PDE)

Method
Measure \(\alpha \)-ray events from \(^{241}\text{Am}\) sources[2].
• 25 point sources mounted on 5 wires.
• 5.5 MeV \(\alpha \)-ray at \(\sim 100 \) Hz.

The expected number of incident photons is evaluated using MC simulation.

\[\text{PDE} = N_{\text{phoe,measured}}/N_{\text{phoe,expected}} \]

Result

Measured PDE: 8.6 % (average)
• Relative uncertainty: 4%(channel by channel)
• Lower than the previous measurement(\(\sim 18\%\))\[3\]

\(\sim 30\% \) PDE drop under muon beam (370 hours@\(7 \times 10^7 \mu/s \)).

Precision meets the requirement.

5. Summary

• VUV-sensitive MPPC has been developed and installed in MEG II liquid xenon gamma-ray detector.
• We have developed calibration methods that realizes O(1)% precision on gain, ECF and PDE.
• Intrinsic response of MPPC has been stable under high intensity muon beam environment.

6. Acknowledgement

We thank PSI as the host laboratory.
This work was supported by JSPS KAKENHI Grant Number JP19J21730.

7. Reference