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1. INTRODUCTION

Currently, there is a discrepancy of about 3.5σ between the Standard Model prediction
of the anomalous magnetic moment of the muon (g − 2)µ and its experimental
measurement. On the theoretical side, most of the uncertainty comes from the hadronic
sector, namely from the hadronic vacuum polarization (HVP) and hadronic light-by-
light (HLbL) contributions.

HVP contribution to (g − 2)µ HLbL contribution to (g − 2)µ

At the present level of uncertainty, the order α radiative corrections to the pion vector
form factor become relevant in the HVP contribution to (g − 2)µ. The aim of this
project is to improve our understanding of these corrections in a model-independent
way, based on unitarity and dispersion relations.

2. DISPERSIVE METHOD

The pion vector form factor can be calculated as a once-subtracted dispersion relation
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Starting from the unitarity relation, we calculate the contributions to the imaginary
part by cutting the relevant diagrams displayed in 2.1. in all possible ways. We
restrict ourselves to topologies with at most two pions (and possibly a photon) in the
intermediate state. Taking the case of topology (iii) as an illustration, there are four cuts:

In practice, those cuts are related to phase-space integrals that lead to IR divergences.
In fact, only topology (i) carries an IR-divergence that is cancelled by the soft-photon
emission in the total inclusive cross-section. The others are IR-safe quantities, even
though the contribution from the different cuts are separately divergent and need to be
regularized.

3. PRELIMINARY RESULTS

So far, we have calculated the
contribution from topologies
(i) and (ii), as well as the S-
and P-wave contributions to
(iii).
This plot describes the
relative correction to the
total inclusive cross-section
σ (e−e+ → π+π−(γ)). The
correction is of the order
of half a percent, which is
small. One can clearly see
the influence of the ρ(770)
and f0(980) resonances due
to ππ rescattering effect.
These structures may have
a sizeable influence on the
data.
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2.1. TOPOLOGIES
The different O (α) corrections to the
process γ∗ → π−π+ are the following:

(i)

(ii)

(iii)

(iv)

Any further topology is already
contained in that set, since the blobs
account for all hadronic processes.

2.2. SUBAMPLITUDES
It can happen that a subamplitude
present in the unitarity relation is an a
priori unknown loop-diagram. In this
case, we must apply the method on the
subamplitude itself.

This process goes on until all
subamplitudes consist exclusively
of tree-diagrams. Those are either
purely hadronic quantities, or pion-
pole contributions to the corresponding
process.

2.3. HADRONIC INPUT
The vertices in the diagrams above are
non-local and thus dressed with hadronic
blobs. The black ones represent the
purely hadronic pion vector form factor
and the crossed ones the ππ scattering
amplitudes in the isospin limit.

These hadronic quantities are taken as
input and the latter is expanded in partial
waves,

AI(s, t) = 32π
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)
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where the series is dominated by the
lowest ones at low energy.

For energies below
√
s = 1.42 GeV,

parametrizations of the partial waves
coming from Roy equation analysis can
be used. For higher energies, we rely on a
Regge description.


