PsEUDOSCALAR CONTRIBUTION

to the Muon g-2

Franziska Hagelstein (AEC Bern)
in collaboration with
G. Colangelo (AEC - Bern), M. Hoferichter (INT - Seattle),
L. Laub (AEC - Bern) and P. Stoffer (University of California - San Diego)

MUON ANOMALIE g-2

- Low-energy observables measured to high precision provide stringent tests of the Standard Model (SM) of particle physics.
- 3 to 4σ discrepancy between the SM prediction and the experimental value of the muon anomalous magnetic moment $a_{\mu}=(g-2)_{\mu} / 2$ from BNL E82I

- Fermilab E989 experiment is expected to reduce the experimental uncertainty by a factor of 4 (talk by P. Winter) \& J-PARC experiment will provide independent cross check
- Uncertainty of the SM prediction is dominated by hadronic corrections

HADRONIC CORRECTIONS

$$
\begin{aligned}
a_{\mu}^{\mathrm{LO} \mathrm{HVP}} & =[689.46 \pm 3.25] \times 10^{-10} \\
a_{\mu}^{\mathrm{HLLL}} & =[10.34 \pm 2.88] \times 10^{-10}
\end{aligned}
$$

- Leading uncertainty presently comes from hadronic vacuum polarization (HVP)
- Soon hadronic light-by-light scattering (HLbL) will be leading uncertainty

pseudoscalar-pole contribution:

$$
a_{\mu}^{\pi^{0}-\text { pole }}=62.6_{-2.5}^{+3.0} \times 10^{-11}
$$

M. Hoferichter et al., PRL 121, 112002 (2018)

- QCD is non-perturbative at low energies, therefore we use dispersion relations, lattice QCD and effective field theories
- Short-distance constraints (SDCs) are important for a model-independent approach towards hadronic corrections, because mixed- and high-energy regions cannot be constrained from data

DATA-DRIVEN DISPERSIVE APPROACH TO HVP

- HVP is calculated with a systematic data-driven dispersive approach:

$$
a^{\mathrm{HVP}}=\frac{\alpha^{2}}{3 \pi^{2}} \int_{m_{\pi}^{2}}^{\infty} \mathrm{d} s \frac{R_{\gamma}^{\mathrm{had}}(s) K\left(s / m^{2}\right)}{s}
$$

$$
\begin{aligned}
& K\left(s / m^{2}\right)=\int_{0}^{1} \mathrm{~d} x \frac{x^{2}(1-x)}{x^{2}+(1-x) s / m^{2}} \\
& R_{\gamma}^{\mathrm{had}}(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow \mu^{+} \mu^{-}\right)}
\end{aligned}
$$

F. Jegerlehner, Springer Tracts Mod. Phys. 274 (2017)
M. Davier, Nucl. Part. Phys. Proc. 287-288, 70 (2017)

Poster: "Dispersive treatment of the radiative corrections to the pion vector form factor" (J. Monnard, AEC Bern)

- We also want a model-independent dispersive approach to study HLbL!

DISPERSIVE APPROACH TO HLBL

- HLbL: no analogue of the simple dispersive formula dispersive formula for the e.m. vertex function:
dispersive formula for the

V. Pauk and M. Vanderhaeghen, Phys. Rev. D 90, 113012 (2014)
light-by-light scattering amplitude:

G. Colangelo, et al., JHEP 1509 (2015) 074

Schwinger sum rule (a dispersive formula for Compton scattering):

$$
a_{\mu}=\frac{m^{2}}{\pi^{2} \alpha} \int_{\nu_{0}}^{\infty} \mathrm{d} \nu\left[\frac{\sigma_{L T}\left(\nu, Q^{2}\right)}{Q}\right]_{Q^{2}=0}
$$

CS amplitude, a_{μ}

Cross sections, structure functions
FH and V. Pascalutsa, PRL 120 (2018) 072002 and 1907.06927 (2019)

PSEUDOSCALAR-POLE CONTRIBUTION

Reference	π^{0}-pole	η-pole	η^{\prime}-pole	PS-pole
Knecht \& Nyffeler	$5.8(1.0)$	$1.3(0.1)$	$1.2(0.1)$	$8.3(1.2)$
Melnikov \& Vainshtein	7.65	1.8	1.8	$11.4(1.0)$
Masjuan \& Sanchez-Puertas	$6.30 \div 6.41$	$1.62 \div 1.63$	$1.43 \div 1.47$	$9.43(0.53)$

- Pseudoscalar-pole (in particular Pion-pole) contributions are the leading HLbL contributions
- Mixed- and high-energy regions need to be estimated for a full evaluation
- Issue: pseudoscalar-pole contribution does not have the asymptotic behaviour dictated by QCD
- Effective solution proposed by Melnikov \& Vainshtein is incompatible with low-energy properties of the HLbL tensor K. Melnikov and A. Vainshtein, Phys. Rev. D 70, 113006 (2004)
- SDCs can be satisfied with a summation over an infinite tower of pseudoscalar poles

SDC FOR MIXED- AND HIGH ENERGIES

$P=\pi^{0}, \eta, \eta^{\prime}$

- Relevant part of the HLbL tensor:
$\Pi_{1}^{\text {P-pole }}=-\frac{F_{P_{\gamma^{*} \gamma^{*}}}\left(-Q_{1}^{2},-Q_{2}^{2}\right) F_{P \gamma \gamma^{*}}\left(-Q_{3}^{2}\right)}{Q_{3}^{2}+M_{P}^{2}}$
G. Colangelo, et al., JHEP 1704 (2017) 161
- SDCs for asymptotic ($Q^{2} \equiv Q_{1}^{2} \approx Q_{2}^{2} \approx Q_{3}^{2} \gg \Lambda_{\mathrm{QCD}}^{2}$) and mixed energy region $\left(Q^{2} \equiv Q_{1}^{2} \approx Q_{2}^{2} \gg Q_{3}^{2}\right)$ (Menikov \& Vainshtein 044) follow from the operator product expansion (OPE):
$\lim _{Q \rightarrow \infty} \sum_{n=0}^{\infty} \hat{\Pi}_{1}^{\pi(n)-\text { pole }}\left(Q^{2}, Q^{2}, Q^{2}\right)=-\frac{1}{9 \pi^{2}} \frac{1}{Q^{4}}$
$\lim _{Q_{3} \rightarrow \infty} \lim _{Q \rightarrow \infty} \sum_{n=0}^{\infty} \hat{\Pi}_{1}^{\pi(n)-\text { pole }}\left(Q^{2}, Q^{2}, Q_{3}^{2}\right)=-\frac{1}{6 \pi^{2}} \frac{1}{Q^{2} Q_{3}^{2}}$
- Leading term in the OPE for HLbL corresponds to the perturbative quark loop Bijnens etal., 1908.03331 (2019)

SDC FOR TRANSITION FORM FACTOR

- SDCs for pseudoscalar transition form factor
- Chiral Anomaly: $F_{\pi^{0} y y}(0,0)=-\frac{1}{4 \pi^{2} f_{\pi}}$
- Brodsky-Lepage limit: $\lim _{Q^{2} \rightarrow \infty} F_{\pi^{0} \gamma \gamma^{*}}\left(Q^{2}\right)=-\frac{2 f_{\pi}}{Q^{2}}$
- Symmetric pQCD limit: $\lim _{Q^{2} \rightarrow \infty} F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(Q^{2}, Q^{2}\right)=-\frac{2 f_{\pi}}{3 Q^{2}}$
- Melnikov \& Vainshtein replaced the external photon vertex with the transition form factor at real-photon point (dropped Q^{2} dependence)
- Prescription is incompatible with low-energy properties of the HLbL tensor

INFINITE TOWERS OF MESONS

- Start from a large- N_{c} Regge model:

Broniowski and Ruiz Arriola, Phys. Rev. D74, 034008 (2006)
$F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(-Q_{1}^{2},-Q_{2}^{2}\right) \propto \sum_{V=}\left[\frac{1}{D_{V}^{1} D_{V_{0}}^{2}}+\frac{1}{D_{V_{0}}^{1} D_{V_{\rho}}^{2}}\right] \quad$ with $D_{X}^{i}:=Q_{i}^{2}+M_{X}^{2}$

- Symmetric Momenta: $F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(-Q^{2},-Q^{2}\right) \propto \sum_{n=0}^{\infty} \frac{1}{\left[Q^{2}+M_{V(n)}^{2}\right]^{2}}$

$$
=\frac{1}{\sigma_{V}^{4}} \psi^{(1)}\left(\frac{M_{V}^{2}+Q^{2}}{\sigma_{V}^{2}}\right)
$$

- Each term in the sum is of $\mathcal{O}\left(1 / Q^{4}\right)$, but the infinite sum satisfies the symmetric pQCD limit $\lim _{Q^{2} \rightarrow \infty} F_{\pi^{0} \gamma^{*} \gamma^{*}}\left(Q^{2}, Q^{2}\right)=-\frac{2 f_{\pi}}{3 Q^{2}}$
- In the same way, the SDCs on the HLbL tensor will be satisfied

LARGE-Nc REGGE MODEL

- Vector-meson-dominance model for transition form factors of radially-excited pseudoscalar mesons
- Large- N_{c} limit - spectrum of the theory in any sector (set of quantum numbers) reduces to an infinite tower of narrow resonances
- Regge ansatz for masses of radially-excited mesons $M_{V(n)}^{2}=M_{V(0)}^{2}+n \sigma_{V}^{2}$
- Minimal model that satisfies all constraints on the transition form factors and HLbL tensor
- Reproduce phenomenological constraints

$$
\begin{aligned}
F_{\pi(n) \gamma^{*} \gamma^{*}}\left(-Q_{1}^{2},-Q_{2}^{2}\right)= & \frac{1}{8 \pi^{2} F_{\pi}}\left\{\left(\frac{M_{\rho}^{2} M_{\omega}^{2}}{D_{\rho(n)}^{1} D_{\omega(n)}^{2}}+\frac{M_{\rho}^{2} M_{\omega}^{2}}{D_{\rho(n)}^{2} D_{\omega(n)}^{1}}\right)\left[c_{\mathrm{anom}}+\frac{1}{\Lambda^{2}}\left(c_{A} M_{+, n}^{2}+c_{B} M_{-, n}^{2}\right)+c_{\mathrm{diag}} \frac{Q_{1}^{2} Q_{2}^{2}}{\Lambda^{2}\left(Q_{+}^{2}+M_{\mathrm{diag}}^{2}\right)}\right]\right. \\
+ & \left.\frac{Q_{-}^{2}}{Q_{+}^{2}}\left[c_{\mathrm{BL}}+\frac{1}{\Lambda^{2}}\left(c_{A} M_{-, n}^{2}+c_{B} M_{+, n}^{2}\right)\right]\left(\frac{M_{\rho}^{2} M_{\omega}^{2}}{D_{\rho(n)}^{1} D_{\omega(n)}^{2}}-\frac{M_{\rho}^{2} M_{\omega}^{2}}{D_{\rho(n)}^{2} D_{\omega(n)}^{1}}\right)\right\} \\
& \quad \text { with } M_{ \pm, n}^{2}=\frac{1}{2}\left(M_{\omega(n)}^{2} \pm M_{\rho(n)}^{2}\right), \quad Q_{ \pm}^{2}=Q_{1}^{2} \pm Q_{2}^{2}, \quad D_{V}^{j}=Q_{j}^{2}+M_{V}^{2}
\end{aligned}
$$

PIONTRANSITION FORM FACTOR

ETA TRANSITION FORM FACTORS

- Vector-meson-dominance model with of isoscalar-isoscalar and isovector-isovector pairs
- Relative coupling strengths follow from effective Lagrangian
- $\eta-\eta^{\prime}$ and $\phi-\omega$ mixings must be considered

n

n

ETA TRANSITION FORM FACTORS

SUM OF PSEUDOSCALAR-POLE CONTRIBUTIONS

$$
\Delta a_{\mu}^{P-\text { poles }}\left(n_{\max }\right)=\sum_{n=1}^{n_{\text {max }}} a_{\mu}^{P(n)-\text { pole }}
$$

$$
\begin{aligned}
& \Delta a_{\mu}^{\pi-\text { poles }}=2.7(0.4)_{\text {Model }}(1.2)_{\text {syst }} \times 10^{-11}=2.7(1.3) \times 10^{-11} \\
& \Delta a_{\mu}^{\eta-\text { poles }}=\left.3.4_{-0.7}^{+0.9}\right|_{\text {Model }}(0.9)_{\text {syst }} \times 10^{-11}=3.4_{-1.1}^{+1.3} \times 10^{-11} \\
& \Delta a_{\mu}^{\eta^{\prime} \text {-poles }}=6.5(1.1)_{\text {Model }}(1.7)_{\text {syst }} \times 10^{-11}=6.5(2.0) \times 10^{-11}
\end{aligned}
$$

- Total effect of excited pseudoscalar mesons: $\Delta a_{\mu}^{\mathrm{PS} \text {-poles }}=\Delta a_{\mu}^{\pi \text {-poles }}+\Delta a_{\mu}^{\eta \text {-poles }}+\Delta a_{\mu}^{\eta^{\prime} \text {-poles }}$

$$
\begin{aligned}
& =\left.12.6_{-1.5}^{+1.6}\right|_{\text {Model }}(3.8)_{\text {syst }} \times 10^{-11} \\
& =12.6(4.1) \times 10^{-11}
\end{aligned}
$$

- Original and updated MV result:

$$
\begin{array}{lll}
\Delta a_{\mu}^{\pi \text {-poles }} & \left.\right|_{\mathrm{MV}}=13.5 \times 10^{-11} & {\left[16.2 \times 10^{-11}\right]} \\
\left.\Delta a_{\mu}^{\eta \text {-poles }}\right|_{\mathrm{MV}}=5.0 \times 10^{-11} & {\left[10.0 \times 10^{-11}\right]} \\
\left.\Delta a_{\mu}^{\eta^{\prime} \text {-poles }}\right|_{\mathrm{MV}}=5.0 \times 10^{-11} \quad\left[12.1 \times 10^{-11}\right]
\end{array}
$$

MATCHING TO PERTURBATIVE QUARK LOOP

$$
a_{\mu}^{\mathrm{HLbL}}=\frac{2 \alpha^{3}}{3 \pi^{2}} \int_{0}^{\infty} d Q_{1} \int_{0}^{\infty} d Q_{2} \int_{-1}^{1} d \tau \sqrt{1-\tau^{2}} Q_{1}^{3} Q_{2}^{3} \sum_{i=1}^{12} T_{i}\left(Q_{1}, Q_{2}, \tau\right) \bar{\Pi}_{i}\left(Q_{1}, Q_{2}, \tau\right)
$$

with $Q_{3}^{2}=Q_{1}^{2}+2 Q_{1} Q_{2} \tau+Q_{2}^{2}$

$$
\left.\Delta a_{\mu}^{\mathrm{PS}-\text { poles }}\right|_{\mathrm{MV}}=23.5 \times 10^{-11} \quad\left[38 \times 10^{-11}\right]
$$

high-energy region

$$
\Delta a_{\mu}^{\mathrm{LSDC}}=\left[8.7(5.5)_{\mathrm{PS}-\text { poles }}+4.6(9)_{q-\text { loop }}\right] \times 10^{-11} \sim 13(6) \times 10^{-11}
$$

SUMMARY AND CONCLUSIONS

- Uncertainty of the SM prediction is dominated by hadronic corrections
- HVP is calculated with a systematic data-driven dispersive approach - we want a similar model-independent approach for HLbL
- Pseudoscalar-pole contributions are the leading HLbL contributions
- Mixed- and high-energy regions are not constraint by data and need to be estimated - SDCs from operator product expansion
- Infinite tower of radially-excited pseudoscalar-pole diagrams can satisfy the Melnikov-Vainshtein SDC in the mixed region and the asymptotic SDC
- Large- N_{c} Regge model for the pseudoscalar transition form factors
- Effect of SDCs is smaller than previously estimated:

$$
\Delta a_{\mu}^{\mathrm{LSDC}}=\left[8.7(5.5)_{\mathrm{PS}-\mathrm{poles}}+4.6(9)_{q-\text { loop }}\right] \times 10^{-11} \sim 13(6) \times 10^{-11}
$$

Back-up Slides

LOW- AND MIXED ENERGY REGION

$$
a_{\mu}^{\mathrm{HLbL}}=\frac{2 \alpha^{3}}{3 \pi^{2}} \int_{0}^{\infty} d Q_{1} \int_{0}^{\infty} d Q_{2} \int_{-1}^{1} d \tau \sqrt{1-\tau^{2}} Q_{1}^{3} Q_{2}^{3} \sum_{i=1}^{12} T_{i}\left(Q_{1}, Q_{2}, \tau\right) \bar{\Pi}_{i}\left(Q_{1}, Q_{2}, \tau\right)
$$

low-energy region
with $Q_{3}^{2}=Q_{1}^{2}+2 Q_{1} Q_{2} \tau+Q_{2}^{2}$

mixed-energy region

