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Low-energy observables measured to high precision provide stringent tests of 
the Standard Model (SM) of particle physics. 

3 to 4  discrepancy between the SM prediction and the experimental value of 
the muon anomalous magnetic moment  from BNL E821

Fermilab E989 experiment is expected to reduce the experimental uncertainty 
by a factor of 4 (talk by P.  Winter) & J-PARC experiment will provide 
independent cross check

Uncertainty of the SM prediction is dominated by hadronic corrections

σ
aμ = (g − 2)μ/2

DHMZ

HLMNT
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(a�-11 659 000) � 10
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aexp.
μ = [11 659 209.1 ± 6.3] × 10−10

ath.
μ = [11 659 178.3 ± 4.3] × 10−10
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HADRONIC CORRECTIONS
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(a) (b)

HVP HLbL

(a) (b)Leading uncertainty presently comes from hadronic vacuum polarization (HVP)

Soon hadronic light-by-light scattering (HLbL) will be leading uncertainty

QCD is non-perturbative at low energies, therefore we use dispersion 
relations, lattice QCD and effective field theories

Short-distance constraints (SDCs) are important for a model-independent 
approach towards hadronic corrections, because mixed- and high-energy 
regions cannot be constrained from data

aLO HVP
μ = [689.46 ± 3.25] × 10−10

aHLbL
μ = [10.34 ± 2.88] × 10−10

aπ0−pole
μ = 62.6+3.0

−2.5 × 10−11

pseudoscalar-pole contribution:

M. Hoferichter et al., PRL 121, 112002 (2018) 
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DATA-DRIVEN DISPERSIVE APPROACH TO HVP
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HVP is calculated with a systematic data-driven dispersive approach:

F. Jegerlehner, Springer Tracts Mod. Phys. 274 (2017) 
M. Davier, Nucl. Part. Phys. Proc. 287-288, 70 (2017) (a) (b)

HVP

Two Roads:

• To R(s):

• Method: dispersion relation.

• Based on Im⇧had(s > 0).

• input: e+e� ! had data.

F. Jegerlehner, hep-ph/1804.07409
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aHVP =
α2

3π2 ∫
∞

m2
π

ds
Rhad

γ (s) K(s/m2)
s

Rhad
γ (s) =

σ(e+e− → γ* → hadrons)
σ(e+e− → γ* → μ+μ−)

K(s/m2) = ∫
1

0
dx

x2(1 − x)
x2 + (1 − x) s/m2

HLbL

(a) (b)

We also want a model-independent dispersive 
approach to study HLbL!

Poster: “Dispersive treatment of the radiative corrections to 
the pion vector form factor” (J. Monnard, AEC Bern)
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HLbL: no analogue of the simple dispersive formula 

V. Pauk and M. Vanderhaeghen, Phys. Rev. D 90, 113012 (2014) 

compare our result with the calculation using the approach
of [16], by evaluating the two-loop integral in Euclidian
space. The contributions of the two types of discontinuities,
their sum and the result of the conventional integration
depending on the pseudoscalar meson mass are shown in
Fig. 4, and their numerical values at the π0 mass are
summarized in Table I. When comparing the result
obtained by the two different methods we find an exact
agreement confirming the consistency of the adopted
procedure.
The suggested approach opens a new alternative strategy

for evaluating the HLbL contributions to the anomalous
magnetic moment of the muon. In contrast to the conven-
tional approach where the integration is carried out after
the analytical continuation to the Euclidian region, the new

approach implies the dispersive evaluation of the loop
integrals. As a result, it allows for a more straightforward
relation to observables. The nonperturbative hadronic
matrix elements entering the discontinuities can be further
reduced and expressed in terms of the existing observables
by iterative implementation of the dispersive representation.
For instance, the four-photon matrix element entering
the three-photon discontinuity shown in Fig. 2 can be
expressed in terms of γγ → X production amplitudes which
are accessible experimentally. In order to reduce the
uncertainty of the HLbL estimate to aμ, an improvement
of data is most of all required in the low-energy region for
the γγ → ππ channel as this corresponds with the largest
source of uncertainty so far. The discontinuities of the
HLbL amplitude entering the dispersion integral in Eq. (6)
are weighted by analytically known kinematic functions
of Eq. (5). This allows to localize the regions correspond-
ing with the dominant contributions, which opens a door
towards a systematic study of the uncertainties. Practically,
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FIG. 4 (color online). The value of the HLbL pole contribu-
tion due to the diagram of topology (1) (left panel in Fig. 3) to
aμ scaled by factor of 4πM3=ðe2ΓγγÞ depending on the mass of
the pseudoscalar meson, with Γγγ the two-photon decay width
of the pseudoscalar meson. The blue dashed (red dotted) curve
represents the contribution of the two (three) particle cuts.
Their sum is denoted by the black dash-dotted curve. The result
of the direct evaluation of the two-loop integral is illustrated by
the pink solid curve.

TABLE I. The contributions to aμ (in units 10−10) of two-
particle (2p) and three-particle (3p) cuts for the two topologies
(see Fig. 3) appearing in the pole approximation compared to the
results of the conventional two-loop integration of [16]. Note that
total ¼ 2 × ð1Þ þ ð2Þ.

2p-cut 3p-cut Total Direct

(1) 4.91 −2.14 2.77 2.77
(2) −7.40 7.56 0.16 0.16
Total 2.42 3.28 5.70 5.70

FIG. 3. The two topologies of the HLbL contribution to aμ in
the pole approximation and examples of the two-particle
(dashed) and three-particle (dotted line) cuts for the first
topology (left panel). The wavy lines stand for photons,
whereas the double-dashed (double-solid) lines stand for
pseudoscalar (vector) meson poles.

       

FIG. 2. Unitarity diagrams contributing to the imaginary part
of the vertex function. The cut indicates the on-shell inter-
mediate state.
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dispersive formula for the e.m. vertex function:

Figure 1. Unitarity diagrams according to the Mandelstam representation. Crossed diagrams are omitted.

where the Ti are known kernel functions, the Π̄i suitable linear combinations of the BTT Πi, and the
Euclidean momenta are given by [30]

Q21,2 =
Σ

3

(

1 −
r
2
cosφ ∓

r
2
√
3 sin φ

)

, Q23 =
Σ

3
(1 + r cosφ) . (7)

There are only 6 distinct functions Π̄i, the remaining ones are again related to these by crossing
symmetry. It suffices to calculate the Π̄i in the kinematic limit where q4 → 0, the transition to (g− 2)µ
then proceeds by means of Eq.(6).

4 Mandelstam representation
Although the scalar functions in the master formula Eq.(6) are needed only for the reduced kinematics
where the limit q4 → 0 is taken, we define the dispersion relation in the Mandelstam variables of
the four-point function with general kinematics and evaluate it only afterwards for the special case
q4 → 0. This procedure has the following advantage: the HLbL contribution to (g − 2)µ splits into
contributions from different topologies (shown in fig. 1), each of them linked to a specific sub-process,
which is either data input or again a dispersively reconstructed quantity. These different contributions
are discussed in the following.
Gauge invariance, encoded in the BTT decomposition, leads to Lorentz structures T µνλσi of mass

dimension 4, 6, and 8. Hence, we expect the scalar functions Πi to be rather strongly suppressed at
high energies. Thus we write down unsubtracted double-spectral (Mandelstam) representations for the
Πi [35], i.e. parameter-free dispersion relations. The input to the dispersion relation are the residues
at poles (due to single-particle intermediate states) and the discontinuities along branch cuts (due to
two-particle intermediate states). Both are defined by the unitarity relation, in which the intermediate
states are always on-shell. We neglect contributions from intermediate states consisting of more than
two particles in the primary cut. Heavier intermediate states are expected to be suppressed by higher
thresholds and smaller phase space, in agreement with the outcome of model calculations.

The first topology in fig. 1 consists of the pion pole, i.e. the terms arising from a single pion
intermediate state. This contribution is well-known [34] and given by

Π̄
π0-pole
1 = −

Fπ0γ∗γ∗
(

−Q21,−Q
2
2
)

Fπ0γ∗γ∗
(

−Q23, 0
)

Q23 + M2π
,

Π̄
π0-pole
2 = −

Fπ0γ∗γ∗
(

−Q21,−Q
2
3
)

Fπ0γ∗γ∗
(

−Q22, 0
)

Q22 + M2π
, (8)

where Fπ0γ∗γ∗ denotes the pion transition form factor (for off-shell photons but an on-shell pion).
The other topologies in fig. 1 are obtained by selecting two-pion intermediate states in the primary

cut. The sub-process γ∗γ∗ → ππ is again cut in the crossed channel. If we single out the pion-
pole contribution in both of the sub-processes, we obtain the box topologies for HLbL. For higher

4
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G. Colangelo, et al., JHEP 1509 (2015) 074

dispersive formula for the 
light-by-light scattering amplitude:

Schwinger sum rule (a dispersive 
formula for Compton scattering):

CHAPTER III

COMPTON SCATTERING AND POLARIZABILITIES

In this Chapter, we classify the CS processes (Section III.1) and give a general introduction
into the concepts of polarizabilities (Section III.1.1) and model-independent sum rules (Sec-
tion III.1.2). After that, we will focus on the RCS while delegating the case of VVCS to
Chapter IV. The status of our knowledge of the lowest-order nucleon polarizabilities is reviewed
in Section III.2. In Section III.3, we will study the Compton contribution to photoabsorption
and the associated CS sum rules in scalar and spinor one-loop QED. A modification of the sum
rules which deals with the infrared divergences has been published in Refs. [238, 239].

1. Basic Principles

Figure I.2 shows a CS process — an absorption and subsequent emission of a photon by a target.
The particles in the initial and final states are the same, and their initial (final) momenta
are denoted by q(q0) for the photon and p(p0) for the target. The photons can be real, i.e.,
q2 = 0 = q0 2, or virtual. In VCS, the initial photon is virtual and the final photon is real,
�⇤ p ! � p. In VVCS, both photons are virtual.

Im ∝
2

Figure III.1.: Illustration of the optical theorem, relating the imaginary part of the forward Compton
scattering amplitude to the total photoabsorption cross section.

Of special interest is the forward limit, where p = p0 and q = q0. Accordingly, the Mandelstam
invariant t = (q�q0)2 = (p�p0)2 vanishes. In this case, unitarity leads to the optical theorem (see
Ref. [320] for a review of the optical theorem and its modern application in scattering theory).
It expresses the imaginary part of the forward CS amplitude through the total photoabsorption
cross section, as is graphically depicted in Fig. III.1: on the left-hand side (lhs) we have the CS
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(ν, Q2) =
2
π ∫

∞

ν0

dν′�
ν′�

ν′�2 − ν2
(ν′�, Q2)

CS amplitude, aμ

Cross sections, structure functions

aμ =
m2

π2α ∫
∞

ν0

dν [ σLT(ν, Q2)
Q ]

Q2=0

FH and V. Pascalutsa, PRL 120 (2018) 072002 and 1907.06927 (2019) 
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Pseudoscalar-pole (in particular Pion-pole) contributions are the leading 
HLbL contributions

Mixed- and high-energy regions need to be estimated for a full evaluation

Issue: pseudoscalar-pole contribution does not have the asymptotic 
behaviour dictated by QCD 

Effective solution proposed by Melnikov & Vainshtein is incompatible with 
low-energy properties of the HLbL tensor                                                         
K. Melnikov and A. Vainshtein, Phys. Rev. D 70, 113006 (2004) 

SDCs can be satisfied with a summation over an infinite tower of 
pseudoscalar poles 

PSEUDOSCALAR-POLE CONTRIBUTION

27

Part 5

Summary and Conclusions

TABLE IV: Pseudoscalar-pole contributions to aµ in units of 10�10. For the individual ⇡0, ⌘ and ⌘0 contributions from Ref. [? ] we quote
their central values from C1

2 [a
max
P ;1,1] and C1

2 [a
min
P ;1,1].

Reference ⇡0-pole ⌘-pole ⌘0-pole PS-pole
Knecht & Nyffeler 5.8(1.0) 1.3(0.1) 1.2(0.1) 8.3(1.2)

Melnikov & Vainshtein 7.65 1.8 1.8 11.4(1.0)

Masjuan & Sanchez-Puertas 6.30 ÷ 6.41 1.62 ÷ 1.63 1.43 ÷ 1.47 9.43(0.53)
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Relevant part of the HLbL tensor:

    

G. Colangelo, et al., JHEP 1704 (2017) 161

SDCs for asymptotic ( ) and mixed 
energy region ( ) (Melnikov & Vainshtein ’04) follow 
from the operator product expansion (OPE):

  

  

Leading term in the OPE for HLbL corresponds to the 
perturbative quark loop Bijnens et al., 1908.03331 (2019) 
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1, − Q2

2) FPγγ*(−Q2
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3

Introduction Review of SDCs Regge Model Conclusion

Short-distance contraint on HLbL: high-energy region

Perturbative QCD quark loop:

Q2
1 ⇡ Q2

2 ⇡ Q2
3 � ⇤2

QCD: leading term in the
OPE for HLbL corresponds to the quark loop

Bijnens et al., 1908.03331 (2019)

Analytical expression and decomposition into
scalar functions of the quark loop is known

Hoferichter, Stoffer

High-energy constraint on HLbL (isospin component a = 0, 3, 8):

lim
Q2!1

Q4 ⇧̂(a)
1 (�Q2,�Q2,�Q2) = � 4

9⇡2
C 2
a

C 2
0 + C 2

3 + C 2
8
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SDC FOR MIXED- AND HIGH ENERGIES

Introduction Review of SDCs Regge Model Conclusion
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Colangelo et al., JHEP 1704 (2017) 161
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SDCs for pseudoscalar transition form factor

• Chiral Anomaly: 

• Brodsky-Lepage limit:

• Symmetric pQCD limit:

Melnikov & Vainshtein replaced the external photon vertex with the transition 
form factor at real-photon point (dropped  dependence)

• Prescription is incompatible with low-energy properties of the HLbL tensor

Fπ0γγ(0,0) = −
1

4π2fπ
lim

Q2→∞
Fπ0γγ*(Q2) = −

2fπ
Q2

lim
Q2→∞

Fπ0γ*γ*(Q2, Q2) = −
2fπ

3Q2

Q2

SDC FOR TRANSITION FORM FACTOR
Hadronic Contributions Short-distance constraints

Tension between the constraints?
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Start from a large-Nc Regge model: 
       Broniowski and Ruiz Arriola, Phys. Rev. D74, 034008 (2006) 

    

• Symmetric Momenta: 

• Each term in the sum is of , but the infinite sum satisfies the 

symmetric pQCD limit

In the same way, the SDCs on the HLbL tensor will be satisfied

Fπ0γ*γ*(−Q2
1 , − Q2

2) ∝ ∑
Vρ,Vω

[ 1
D1

Vρ
D2

Vω

+
1

D1
Vω

D2
Vρ

]
Fπ0γ*γ*(−Q2, − Q2) ∝

∞

∑
n=0

1
[Q2 + M2

V(n)]2

=
1
σ4

V
ψ (1) ( M2

V + Q2

σ2
V )

𝒪(1/Q4)

lim
Q2→∞

Fπ0γ*γ*(Q2, Q2) = −
2fπ

3Q2

with
!

π
#

$

!INFINITE TOWERS OF MESONS

Di
X := Q2

i + M2
X
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!

π
#

$

!

π0, π(1300), 
π(1800), …

Vector-meson-dominance model for transition form factors of radially-excited 
pseudoscalar mesons 

• Large-Nc limit — spectrum of the theory in any sector (set of quantum 
numbers) reduces to an infinite tower of narrow resonances

• Regge ansatz for masses of radially-excited mesons  

• Minimal model that satisfies all constraints on the transition                         
form factors and HLbL tensor

• Reproduce phenomenological constraints

M2
V(n) = M2

V(0) + n σ2
V

10

Fπ(n)γ*γ*(−Q2
1 , − Q2

2) =
1

8π2Fπ (
M2

ρ M2
ω

D1
ρ(n)D2

ω(n)
+

M2
ρ M2

ω

D2
ρ(n)D1

ω(n) ) [canom +
1

Λ2 (cAM2
+, n + cBM2

−, n) + cdiag
Q2

1Q2
2

Λ2(Q2
+ + M2

diag) ]
+

Q2
−

Q2
+ [cBL +

1
Λ2 (cAM2

−, n + cBM2
+, n)] (

M2
ρ M2

ω

D1
ρ(n)D2

ω(n)
−

M2
ρ M2

ω

D2
ρ(n)D1

ω(n) )
M2

±, n =
1
2 (M2

ω(n) ± M2
ρ(n)) , Q2

± = Q2
1 ± Q2

2 , Dj
V = Q2

j + M2
Vwith

LARGE-Nc REGGE MODEL
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PION TRANSITION FORM FACTOR
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ETA TRANSITION FORM FACTORS

!
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!
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$ % $
+ + +

Vector-meson-dominance model with of isoscalar-isoscalar and isovector-isovector pairs

Relative coupling strengths follow from effective Lagrangian 

 and  mixings must be consideredη − η′� ϕ − ω

��

��

��

0 1 2 3

1

2

3

4

5

n

M
2
(G

e
V

2
)

�'(n) excitations

�'(958)

�'(1475)

�'(2010)

�'(2225)

�'(2070)

X(1835)

��

��

��

0 1 2 3 4

0

1

2

3

4

5

6

n

M
2
(G

e
V

2
)

�(n) excitations

�(548)

�(1295)

�(1760)

�(2100)

�(2320)

�(1440)



PSI 2019          Franziska Hagelstein          23th October 2019 13

ETA TRANSITION FORM FACTORS
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SUM OF PSEUDOSCALAR-POLE CONTRIBUTIONS

ΔaPS−poles
μ = Δaπ−poles

μ + Δaη−poles
μ + Δaη′�−poles

μ

= 12.6 +1.6
−1.5 Model

(3.8)syst × 10−11

= 12.6(4.1) × 10−11
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ΔaP−poles
μ (nmax) =

nmax

∑
n=1

aP(n)−pole
μ

Δaπ−poles
μ = 2.7 (0.4)Model (1.2)syst × 10−11 = 2.7 (1.3) × 10−11

Δaη−poles
μ = 3.4 +0.9

−0.7 Model
(0.9)syst × 10−11 = 3.4 +1.3

−1.1 × 10−11

Δaη′�−poles
μ = 6.5 (1.1)Model (1.7)syst × 10−11 = 6.5 (2.0) × 10−11

Total effect of excited pseudoscalar mesons:

Δaπ−poles
μ

MV
= 13.5 × 10−11 [16.2 × 10−11]

Δaη−poles
μ

MV
= 5.0 × 10−11 [10.0 × 10−11]

Δaη′�−poles
μ

MV
= 5.0 × 10−11 [12.1 × 10−11]

Original and updated MV result:
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MATCHING TO PERTURBATIVE QUARK LOOP

aHLbL
μ =

2α3

3π2 ∫
∞

0
dQ1 ∫

∞

0
dQ2 ∫

1

−1
dτ 1 − τ2Q3

1Q3
2

12

∑
i=1

Ti(Q1, Q2, τ)Π̄i(Q1, Q2, τ)

Q2
3 = Q2

1 + 2Q1Q2τ + Q2
2with

high-energy region

ΔaLSDC
μ = [8.7(5.5)PS−poles + 4.6(9)q−loop] × 10−11 ∼ 13(6) × 10−11

ΔaPS−poles
μ

MV
= 23.5 × 10−11 [38 × 10−11]
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SUMMARY AND CONCLUSIONS

Uncertainty of the SM prediction is dominated by hadronic corrections

HVP is calculated with a systematic data-driven dispersive approach — we want 
a similar model-independent approach for HLbL

Pseudoscalar-pole contributions are the leading HLbL contributions

Mixed- and high-energy regions are not constraint by data and need to be 
estimated — SDCs from operator product expansion

Infinite tower of radially-excited pseudoscalar-pole diagrams can satisfy the 
Melnikov-Vainshtein SDC in the mixed region and the asymptotic SDC

Large-Nc Regge model for the pseudoscalar transition form factors

Effect of SDCs is smaller than previously estimated:

ΔaLSDC
μ = [8.7(5.5)PS−poles + 4.6(9)q−loop] × 10−11 ∼ 13(6) × 10−11
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LOW- AND MIXED ENERGY REGION
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