

Test of the crystal-diffraction ultraprecise neutron spectrometry. 7-order magnification of the Stern-Gerlach effect

V. Voronin, S. Semenikhin, Yu. Braginets,

V. Nesvizhevsky, M. Jentchel,

D. Shapiro,

V. Fedorov, Ya. Berdnikov

A. Ioffe,

Università V. Belucci, R. Camattari, V. Guidi

Motivation

To use crystal diffraction effects for neuron in Laue diffraction in perfect crystal to develop an ultraprecise neutron spectrometer with sensitivity to the external force to neutron on a level

$$\sigma(F_{\text{ext}}) \sim (10^{-16} - 10^{-17}) eV/cm$$

We consider symmetrical Laue diffraction in the perfect non-absorbing large crystal

Neutron trajectory in crystal

 \boldsymbol{j} is normal to the dispersion surface and depends on a deviation from exact Bragg condition

$$\theta_{\scriptscriptstyle R} \sim 45^{\scriptscriptstyle 0}$$

Gain factor

$$\frac{2\theta_B}{\Delta\theta_B} \sim \frac{E}{V_g} \sim 10^5$$

23.10.2019 PSI-2019

Neutron trajectory in the externation field

Neutron trajectory equation (Laue diffraction case):

$$\frac{\partial^2 z}{\partial y^2} = \pm \frac{\tan^2(\theta_B)}{m_0} \frac{\pi}{d} \frac{F_n}{2E_n}$$

Equation for free neutron:

$$\frac{\partial^2 z}{\partial y^2} = \frac{F_n}{2E_n}$$

Gain factor for the diffracting neutron

For silicon (220) plane

$$K_d = \tan^2(\theta_B) \times 2 \cdot 10^5 \xrightarrow{\theta_B (84^0 \div 87^0)} (10^7 \div 10^8)$$

$$K_d = \pm \frac{\tan^2(\theta_B)}{m_0} \frac{\pi}{d}$$

 $\frac{2F_gd}{T}$

Diffraction in deformed crystal N.Kato , J. Phys. Soc. Japan (1963) **19**, 971

Experimental measurement of the factor

$$K_d = \tan^2(\theta_B) \times 2.10^5 \xrightarrow{\theta_B(84^0 \div 87^0)} (10^7 \div 10^8)$$

(220) plane of silicon (d = 1.92 Å). Crystal size $130x130x220 \text{ mm}^3$

Test experiment (ILL, PF1b beam)

No field affecting the neutron

This line width means that crystal homogeneity

 $(\Delta d/d)$ is better than 10^{-8} per cm and 10^{-7} for all crystal.

Gradient of magnetic field

Magnetic field gradient

$$grad(|\overrightarrow{B}|) = 1.5 G/cm$$

$$F_M = 10^{-11} \, eV/cm$$

Gravity 10⁻⁹ eV/cm

but different direction

y-coordinate (cm)

Homogeneous magnetic field gradient is ~ 20%

Beam splitting at different Bragg angle

 $grad(|\overrightarrow{B}|) = 1.5 G/cm$

Low statistics due to strong beam monochromatization

 $\Delta \lambda / \lambda \sim 10^{-7}$

Statistics can be increased at least on one order

The beam splitting on Bragg angle

Beam splitting for free neutron with $\lambda = 3.8$ °A, flight base 220 mm(crystal size) and MF gradient 1.5 G/cm will be **about 6 nm.**

Test experiment conclusion

The diffraction gain factor for neutron inclination in the external field was measured first for Bragg angle close to $\pi/2$. It coincide with the theory.

$$K_{\rm exp} = (1.2 \pm 0.2) \cdot 10^5 \cdot \tan^2(\theta_{\rm B})$$

$$K_{\rm t} = 1.14 \cdot 10^5 \cdot \tan^2(\theta_{\rm B})$$

$$\theta_{\rm B} = 82^{\circ}$$

 $K_{\rm exp} = (6.1 \pm 1.0) \cdot 10^6$

For (220) Silicon plane

Corresponds to the external force resolution

 $F_{ext} \sim 5 \cdot 10^{-12} \text{ eV/cm} = 5 \cdot 10^{-3} \text{ mg}$

Next step

1. Setup optimization to increase statistics and reach Bragg angle about (84 -86)⁰ and slit size ~1-2 mm

Improve the current resolution in 10-30 times

External force resolution

$$F_{ext}\sim(2-5)\ 10^{-13}\ eV/cm = (2-5)\ 10^{-4}\ mg$$

2. Design and build the setup with crystals spaced ~ 1 meterapart from each other and multislit collimation.

23.10.2019

PSI-2019

Possible applications

- 1. The sensitivity to the neutron electric charge can be improved by an order of magnitude compared with the current experimental limit;
- 2. The equivalence of the inertial and gravitational mass of the neutron can be verified with an accuracy of 10⁻⁵ (compare with the current experimental value 1.7 10⁻⁴);
- 3. Neutron scattering amplitudes can be measured with higher accuracy for both solids and gases;
- 4. Neutron diffraction in perfect crystals and crystal properties on the inter-planar distance homogeneity of $\Delta d/d \sim (10^{-7} 10^{-8})$ can be studied.

Thank you for attention