Test of lepton universality and search for light neutral bosons with TREK/E36 at J-PARC

Michael Kohl^{1,2,3} <kohlm@jlab.org> *

on behalf of the TREK/E36 Collaboration

¹Hampton University, Hampton, VA 23668

²Jefferson Laboratory, Newport News, VA 23606

³JSPS fellow, Tohoku University, Sendai, Japan

^{*} Supported by DOE Early Career Award DE-SC0003884, and DE-SC0013941

Outline

- Lepton non-universality?
- TREK Program
 - E06: Search for Time Reversal Symmetry Violation
 - E36: Test of Lepton Universality
 - Search for Heavy Neutrinos
 - Search for Light Bosons

Lower intensity

TREK Apparatus

Status

http://trek.kek.jp

Limits of lepton universality (LU)

- e, μ, and τ: Different masses, same gauge couplings
- Lepton universality has been rather well established at 10⁻³ 10⁻² level
- Summary by A. Pich, arXiv:1201.0537v1 [hep-ph] (2012)

	$\Gamma_{\tau \to \nu_{\tau} e \bar{\nu}_e} / \Gamma_{\mu \to \nu_{\mu} e \bar{\nu}_e}$	$\Gamma_{\tau \to \nu_{\tau}\pi}/\Gamma_{\pi \to \mu \bar{\nu}_{\mu}}$	$\Gamma_{ au o u_{ au} K} / \Gamma_{K o \mu \bar{ u}_{\mu}}$	$\Gamma_{W \to \tau \bar{\nu}_{\tau}} / \Gamma_{W \to \mu \bar{\nu}_{\mu}}$
$ g_{ au}/g_{\mu} $	1.0007 ± 0.0022	0.992 ± 0.004	0.982 ± 0.008	1.032 ± 0.012
	$\Gamma_{\tau \to \nu_{\tau} \mu \bar{\nu}_{\mu}} / \Gamma_{\tau \to \nu_{\tau} e \bar{\nu}_{e}}$	$\Gamma_{\pi \to \mu \bar{\nu}_{\mu}} / \Gamma_{\pi \to e \bar{\nu}_{e}}$	$\Gamma_{K \to \mu \bar{\nu}_{\mu}} / \Gamma_{K \to e \bar{\nu}_{e}}$	$\Gamma_{K \to \pi \mu \bar{\nu}_{\mu}} / \Gamma_{K \to \pi e \bar{\nu}_{e}}$
$ g_{\mu}/g_{e} $	1.0018 ± 0.0014	1.0021 ± 0.0016	0.998 ± 0.002	1.001 ± 0.002
	$\Gamma_{W \to \mu \bar{\nu}_{\mu}} / \Gamma_{W \to e \bar{\nu}_{e}}$		$\Gamma_{ au o u_{ au}\muar u_{\mu}}/\Gamma_{\mu o u_{\mu}ear u_{e}}$	$\Gamma_{W \to \tau \bar{\nu}_{\tau}} / \Gamma_{W \to e \bar{\nu}_{e}}$
$\overline{ g_{\mu}/g_e }$	0.991 ± 0.009	$ g_{ au}/g_{e} $	1.0016 ± 0.0021	1.023 ± 0.011

$$\begin{array}{ll} \textbf{Couplings to W and Z^0} \\ \textbf{(LEP-II [PDG 2010])} \end{array} & R^W_{\tau\ell} = \frac{2\,\mathrm{BR}\,(W \to \tau\,\overline{\nu}_\tau)}{\mathrm{BR}\,(W \to e\,\overline{\nu}_e) + \mathrm{BR}\,(W \to \mu\,\overline{\nu}_\mu)} = 1.055(23) \\ \end{array} \\ & \textbf{2.4}\sigma \ \text{dev.}$$

Belle, Babar, LHCb (HFLAV 2019)

$$\mathcal{R}(D^{(*)}) = \mathcal{B}(\overline{B} \to D^{(*)}\tau^{-}\overline{\nu}_{\tau})/\mathcal{B}(\overline{B} \to D^{(*)}\ell^{-}\overline{\nu}_{\ell})$$

3.6σ dev.

LHCb (update from March 22, 2019)

BR(B⁺
$$\rightarrow$$
 K⁺ μ ⁺ μ ⁻) / BR(B⁺ \rightarrow K⁺e⁺e⁻) = 0.846^{+0.060}_{-0.054}^{+0.016}_{-0.014}

2.5σ dev.

Possible link to proton charge radius puzzle

$$r_e (\mu H) = 0.84087 \pm 0.00039 \text{ fm}, r_e (CODATA2014) = 0.8751 \pm 0.0061 \text{ fm}$$

5.6σ dev.

Lepton non-universality in B-decays (τ-μ)

Spring 2019: R(D) ~ 2.3σ, R(D*) ~ 3.0σ
 Combined at 3.62σ

Lepton non-universality in B-decays (µ-e)

- LHCb: $R(K^{(+,*)}) = \Gamma(B^{(+,0)} \rightarrow K^{(+,*)} \mu^+ \mu^-) / \Gamma(B^{(+,0)} \rightarrow K^{(+,*)} e^+ e^-)$
- Summer 2018: R(K^(+,*)) different from SM at the 2.5σ level

[LHCb, PRL 113 (2014) 151601] [LHCb, JHEP 08 (2017) 055] [BaBar, PRD 86 (2012) 032012] [Belle, PRL 103 (2009) 171801]

Lepton non-universality in B-decays (µ-e)

- LHCb: R(K⁺) = Γ(B⁺→K⁺ μ⁺μ⁻) / Γ(B⁺ → K⁺ e⁺e⁻)
- Spring 2019: R(K⁺) different from SM at 2.5σ level

The proton radius puzzle

The proton rms charge radius measured with

electrons: (0.8751 ± 0.0061) fm (CODATA2014)

muons: (0.8409 ± 0.0004) fm

R. Pohl et al., Nature 466, 213 (2010)

A. Antognini et al., Science 339, 417 (2013)

Lepton universality in Standard Model K₁₂

Standard Model:

$$\Gamma(K_{l2}) = g_l^2 \frac{G^2}{8\pi} f_K^2 m_K m_l^2 \left(1 - \frac{m_l^2}{m_K^2} \right)^2$$
K⁺

• In the ratio of $\Gamma(K_{e2})$ to $\Gamma(K_{\mu 2})$, hadronic form factors are cancelled

$$= R_K^{SM} = \frac{\Gamma(K^+ \to e^+ \nu)}{\Gamma(K^+ \to \mu^+ \nu)} = \frac{m_e^2}{m_\mu^2} \left(\frac{m_K^2 - m_e^2}{m_K^2 - m_\mu^2}\right)^2 \underbrace{(1 + \delta_r)}_{\mbox{radiative correction (Internal Brems.)}}$$

- Strong helicity suppression of the electronic channel enhances sensitivity to effects beyond the SM
- Highly precise SM value

$$R_K^{\rm SM}$$
= (2.477±0.001) x 10⁻⁵ with δ_r = -0.036; ($\rightarrow \delta R_K/R_K$ =0.04%) V. Cirigliano, I. Rosell, Phys. Rev. Lett. 99, 231801 (2007)

Experimental status of R_{K}

- Highly precise SM value $R_{\rm K} = (2.477 \pm 0.001) \times 10^{-5}$ (with $\delta_r = -0.036$), $\delta R_{\rm K}/R_{\rm K} = 0.04\%$ V. Cirigliano, I. Rosell, Phys. Rev. Lett. 99, 231801 (2007)
- KLOE @ DAΦNE (in-flight decay)
 R_K = (2.493 ± 0.025 ± 0.019) × 10⁻⁵
 F. Ambrosino et al., Eur. Phys. J. C64, 627 (2009)
- NA62 @ CERN-SPS (in-flight decay)
 R_K = (2.488 ± 0.007 ± 0.007) × 10⁻⁵
 C. Lazzeroni et al., PLB719, 105 (2013)
- World average (2012) $R_{\rm K} = (2.488 \pm 0.009) \times 10^{-5}, \ \delta R_{\rm K}/R_{\rm K} = 0.4\%$
- Dominant systematics:
 - In-flight-decay experiments: kinematics overlap
 - E36 stopped K⁺: detector acceptance and target
 - E36 complementary to in-flight experiments
- E36 orig. goal: $\delta R_K/R_K = \pm 0.2\%$ (stat) $\pm 0.15\%$ (sys) [0.25% total]

K1.1BR beamline

- K1.1BR constructed in 2009/10, commissioned by TREK Coll. in Oct. 2010
- Re-aligned after 3/11 earthquake, re-commissioned June 2012, paused 2013/14
- J-PARC Hadron Hall operations restarted in April 2015
 π/K ratio ~1.3, av. kaon flux 2.3x10⁵ Hz at 40 kW [1.4x10⁶/(2s-spill) at 6s-rep.]

The TREK apparatus for E36

Side View

Modest upgrade of KEK-PS E246

Stopped K⁺

- •K1.1BR beamline
- Fitch Cherenkov
- •*K*⁺ stopping target (TGT)

Tracking (π,μ,e)

- •MWPC (C2, C3, C4)
- Spiral Fiber Tracker (SFT)
- •TGT, TOF1,2, TTC

PID

- •TOF2-TOF1 (TOF)
- Aerogel Che. (AC)
- •Pb glass (PGC)

Gamma

- •CsI(TI)
- Gap veto

The TREK apparatus for E36

TREK/E36 installation and commissioning

- Completed detector installation April 2015
- Electronics and DAQ set up and tested (area available only mid-January)
- Conditioning of MWPCs

- Commissioning of TGT+TOF1+SFT with cosmic rays
- Check-out of all detectors with beam
- Commissioning of toroidal magnet including cryogenics

PMT

μ⁺/e⁺ identification (designed)

PID with:

- TOF
- Aerogel Č
- Lead glass

TOF

Flight length 250 cm
Time resolution <100 ps
Mis-ID probability 7x 10⁻⁴

Aerogel Č counter

Radiator thickness
Refraction index
e⁺ efficiency
Mis-ID probability
4.0 cm
1.08
>98%
3%

Material SF6W
Refraction index 1.05
e+ efficiency 98%
Mis-ID probability 4%

 P_{mis} (total) = P_{mis} (TOF) x P_{mis} (AČ) x P_{mis} (LG) = 8 x 10⁻⁷ < $O(10^{-6})$

μ⁺/e⁺ identification (typical performance)

- Redundant PID to maximize e⁺ efficiency and minimize µ⁺ mis-ID
- PID with:

Aerogel Cherenkov (AC) Lead glass (PGC) Time of flight (TOF)

PID performance limitation mandates subtraction of residual muon background

Scintillating-fiber kaon stopping target

- Built at TRIUMF (delivered to J-PARC in September 2014)
- 256 scintillating fibers (3x3 mm²), WLS fiber in groove, diameter 6 cm
- MPPC readout with VF-48 FADC

M. Hasinoff, S. Bianchin

0.2994 0.1687

220 14.48

200

180

160

140

120 100

30

K-stop-x (mm)

40

Target performance

Kaon stop + decay particle

Kaon beam profiles

Preliminary

S. Bianchin

 $D=79 \text{ mm} \phi$

Spiral fiber tracker (SFT)

1-mm SciFi

Clear fiber

Double-layer fibers in 2 helicities wrapped around target bundle for near target vertex

Kapton pipe (0.2 mm thick) **←** 20 mm →

200 mm

I-mm CFi

Coupling

1.6-mm tube

AC/TOF1 support (Al pipe)

Clear fiber

R-D

Using same VF-48 FADC

as for fiber target

V. Mineev et al., NIM A847, 13 (2017)

CsI(TI) calorimeter

Typical pileup events

Detection of photons from $K^+ \rightarrow \mu^+(e^+) \ v \ \gamma \ from \ IB+SD$ Detection of e^+ , e^- from A' decay

Momentum determination

- Charged particle momentum from tracking with C2, C3, C4 based on Kalman Filter technique (Tongtong Cao)
- Momentum evaluated at C4, C2, SFT, and vertex, corrected for energy loss, shifted from expected value by O(1%) (mag. field and vertex uncertainty)
- Monochromatic peaks from K_{u2} and K_{π2} observed
- Momentum resol. ~1.2%, improve to ~1% with target and SFT in KF for more accurate vertex

Preliminary

Geant4 description of TREK/E36

Geant4 description of TREK/E36

K⁺ Channels

Label	Branch	Ratio
0	$K^+ \rightarrow e^+ \nu$	1.582×10^{-5}
1	$K^+ \rightarrow \mu^+ \nu$	6.355×10^{-1}
2	$K^+ \rightarrow e^+ \pi^0 \nu$	5.07×10^{-2}
3	$K^+ \rightarrow \mu^+ \pi^0 \nu$	3.352×10^{-2}
4	$K^+ \rightarrow e^+ \pi^0 \pi^0 \nu$	2.55×10^{-5}
5	$K^+ \rightarrow \pi^+\pi^-e^+\nu$	4.247×10^{-5}
6	$K^+ \rightarrow \pi^+\pi^-\mu^+\nu$	1.4×10^{-5}
7	$K^+ \rightarrow \pi^+ \pi^0$	2.067×10^{-1}
8	$K^+ \rightarrow \pi^+ \pi^0 \pi^0$	1.760×10^{-2}
9	$K^+ \rightarrow \pi^+\pi^+\pi^-$	5.583×10^{-2}
10	$K^+ \rightarrow \mu^+ \nu \gamma$	6.2×10^{-3}
11	$K^+ \rightarrow e^+ \nu \gamma$	9.4×10^{-6}
12	$K^+ \rightarrow \mu^+ \pi^0 \nu \gamma$	1.25×10^{-5}
13	$K^+ \rightarrow \pi^+\pi^+\pi^-\gamma$	1.04×10^{-4}
14	$K^{+} \rightarrow \mu^{+} \nu A^{'}$	$\epsilon^2 \times ratio\ of\ channel\ 16$
15	$K^+ \rightarrow \pi^+ A^{'}$	$\epsilon^2 \times ratio\ of\ channel\ 17$
16	$K^+ \rightarrow \mu^+ e^+ e^- \nu$	2.5×10^{-5}
17	$K^+ \rightarrow \pi^+ e^+ e^-$	3×10^{-7}

π^0 Channels

Label	Branch	Ratio
0	$\pi^0 o \gamma \gamma$	9.8823×10^{-1}
1	$\pi^0 \rightarrow e^+e^-\gamma$	1.174×10^{-2}
2	$\pi^0 \rightarrow \gamma A'$	$\epsilon^2 \times ratio\ of\ channel\ 2$

ROOT based generator

- Interactive: utilizes Messenger Classes
- Allows for selection of decay modes and branching ratios

Extraction of K_{e2v}(SD) and K_{e2}

- Subtraction of structure dependent K_{e2v} (SD) required
- E36 and KLOE can measure the SD events
- BR(K_{e2v}) is important input for NA62 analysis ($\Delta R_K/R_K$ =0.4%)

K. Horie, S. Shimizu

Extraction of K_{e2v}(SD) and K_{e2}

- Positron momentum spectrum (900 runs)
- PID applied with AC, PGC, TOF
- Decomposition of Ke2, Ke2γ, Ke3 yields
- Competitive E36 result for Ke2γ almost final

K. Horie, S. Shimizu

KLOE: BR(K_{e2y}) = (1.37±0.06) x 10⁻⁵ = [1.37 x (1±0.044)] x 10⁻⁵

F. Ambrosino et al., Eur. Phys. J. C64, 627 (2009); C. Lazzeroni, PANIC 2011

Dark photon / light neutral boson search

- Dark photons (universal coupling) well motivated by dark matter observations (astronomical, direct, positron excess) and g_{μ} -2 anomaly
- Light neutral bosons (selective coupling) for proton radius puzzle
- Search for visible decay mode of A' → e⁺e⁻ in K⁺ decays

Kaons: $K^+ \rightarrow \mu^+ \nu A'$; $K^+ \rightarrow \pi^+ A'$ (also invisible decay);

Pions: $\pi^0 \rightarrow \gamma A'$, using $K^+ \rightarrow \pi^+ \pi^0$ (21.13%) and $K^+ \rightarrow \mu^+ \nu \pi^0$ (3.27%)

E36: Dark photon exclusion limit

E36: Light boson expected signal

Possible A' decay channels in TREK/E36

 K^{+} decays ~ 10^{10}

Signal 1a: $K^+ \rightarrow \pi^+ A'$, $A' \rightarrow e^+ e^-$

Signal 1b: $K^+ \to \pi^+ A'$, $A' \to \gamma \gamma$ (electrophobic scalar boson)

Signal 1c: $K^+ \rightarrow \pi^+ A'$ (via missing mass)

SM Background: BR($K^+ \rightarrow \pi^+ e^+ e^-$) ~ 2.9 x 10⁻⁷ ~ 2,900 ev.

Signal 2: $K^+ \rightarrow \mu^+ \nu A'$, $A' \rightarrow e^+e^-$

SM Background: BR($K^+ \to \mu^+ \nu^- e^+ e^-$) ~ 2.5 x 10⁻⁵ ~ 250k ev.

Add. background from $K^+ \rightarrow \mu^+ \nu \pi^0 \rightarrow \mu^+ \nu e^+ e^- (\gamma)$

 π^0 decays 1) 3x10⁸ π^{0} production: $K^{+} \rightarrow \mu^{+} \nu \pi^{0} (3.3\%)$ $K^{+} \rightarrow \pi^{+} \pi^{0} (21.1\%)$

2) 2x10⁹

Signal 3: $\pi^0 \rightarrow VA', A' \rightarrow e^+e^-$

SM Background: BR($\pi^0 \rightarrow V e^+ e^-$) ~1.2% ~ 0.3 (2.3) x10⁷ ev.

The rare kaon decay $K^+ \rightarrow \mu^+ \nu A' \rightarrow \mu^+ \nu e^+ e^-$

- Background: SM process with time-like (virtual) photon exchange
 - Calculable in QED, BR($K^+ \rightarrow \mu^+ \nu^- e^+ e^-$) = 2.49 x 10⁻⁵ J. Bijnens et al., Nucl. Phys. B396, 81 (1993), hep-ph/9209261
 - Measured for m_{ee} > 145 MeV/c²
 A. Poblaguev et al., Phys. Rev. Lett. 89, 061803 (2002), hep-ex/0204006

Search for a new particle in $K^+ \rightarrow \mu^+ \nu e^+ e^-$

E36:

- Detect μ^+ in toroid, e^+e^- in CsI(TI)
- Simulate achievable resolution for invariant mass m_{ee}

- Simulate QED background
 (radiative decay K⁺ → μ⁺ ν e⁺ e⁻)
 and experimental backgrounds,
 e.g. K⁺ → μ⁺ π⁰ ν → μ⁺ ν e⁺ e⁻ (γ)
- Sensitivity from QED background fluctuation
- \rightarrow Exclusion limits ϵ^2 versus m_{ee}
- P. Monaghan, T. Cao, B. Dongwi (HU)

Csl cluster analysis

- Energy calibration w/ single-crystal K_{μ2}
- Robust wave form analysis
- Require µ⁺ timing and secondary e⁺
- Pulse height distribution
- Energy loss in target (Geant4)

 Use K_{π2} events to develop and validate cluster finding with π⁰ → γγ

H. Ito et al., NIM A 901, 1 (2018)

Bishoy Dongwi

Csl cluster analysis

Generator (e36g4MC): K⁺ \rightarrow π ⁺ π ⁰ (w/o detector resolution)

Bishoy Dongwi

Csl cluster analysis

$K^+ \rightarrow \pi^+ \pi^0 (K_{\pi^2})$ event candidates w/ 2 clusters in CsI(TI)

Bishoy Dongwi

Summary

- Lepton universality is challenged (BaBar, Belle, LHCb)
- TREK/E36: Measurement of K_{e2}/K_{μ2} ratio test of lepton universality;
 Measurement of structure-dependent BR(K_{e2ν})
- Search for dark photon/light boson
- Production running has been completed (Oct. 14 Dec. 18, 2015)
- Analysis underway (calibration, simulation, systematic error studies);
 expect results in the near future
- TREK/E06 (T-violation) in the future

TREK (E36/E06) collaboration

~30 collaborators

Spokespeople:

M.K., S. Shimizu

CANADA

University of British Columbia

Department of Physics and Astronomy

TRIUMF

USA

University of South Carolina

Department of Physics and Astronomy

University of Iowa

Department of Physics

Hampton University

Department of Physics

JAPAN

Osaka University

Department of Physics

Chiba University

Department of Physics

Rikkyo University

Department of Physics

High Energy Accelerator Research Organization (KEK)

Institute of Particle and Nuclear Studies

RUSSIA

Russian Academy of Sciences (RAS)

Institute for Nuclear Research (INR)

Backup

Lepton non-universality in B-decays (τ-μ)

Spring 2019: R(D) ~ 2.3σ, R(D*) ~ 3.0σ
 Combined at 3.62σ

Muon anomalous magnetic moment

Anomaly 'usually' explained by SUSY with large tanβ -> no evidence
Anomaly can be explained with dark photon or light boson

The TREK program

E06

(Time Reversal Experiment with Kaons, TREK)

"Measurement of T-violating transverse muon polarization (P_T) in $K^+ \rightarrow \pi^0 \mu^+ \nu$ decays "

Proposal to PAC 1 (2006)

100-270 kW

Stage-1 approved since July 2006

Spokespeople: Jun Imazato and M.K.

- E36 (Test of Lepton Universality, Search for Heavy Neutrinos and Light Bosons)
- "Measurement of $\Gamma(K^+ \to e^+ v) / \Gamma(K^+ \to \mu^+ v)$ and search for heavy sterile neutrinos using the TREK detector system"

Proposal to PACs 10 (2010), 11,13-18

30-50 kW

Stage-1 approved since August 2012

Stage-2 approved since September 2013

Spokespeople: M.K. and Suguru Shimizu

Timeline of TREK

- 2006: E06 (T-violation) Proposal (PAC1)
- 2009: J-PARC PS and HF start operating
- 2010: E36 (LFU/HNS) Proposal (PAC10)
- 2011: E36 stage-1 recommended (PAC11)
- 2012: E36 stage-1 approved (PAC15)
- 2013: E36 stage-2 recommended (PAC17)
- 2014: E36 stage-2 approved (PAC18)
- Detector preparation November 2014 April 2015
- First commissioning run April 8 (24) May 7, 2015
- Second commissioning run June 3 26, 2015
- Implemented improvements in summer 2015
- Production run October 14 November 24, 2015
- Run extended until December 18, 2015
- 2016-2019: Analysis in progress

Location of J-PARC

J-PARC Hadron Experimental Hall

Particle identification by AC, PGC, and TOF

- Positrons are selected by AC, PGC and TOF
- PID performance by combining the three detectors is now being optimized
- Suppression of muon mis-identification below O(10⁻⁸) level achievable with refined analysis
- Refined analysis of PID performance in progress

Preliminary

Track identification by central detector

SFT+Target consistency established with cosmic rays

Simulation and analysis

Team: Hampton (T. Cao, B. Dongwi, M.K.)

Accomplishments

- Geant4: Completed geometry, now including target, SFT, CsI
- Established, tested Kalman Filter for tracking, fully consistent with G4
- Kaon decay generator developed and implemented into Geant4

Plans

- Acceptance ratio for K_{I2}
- Simulation of DP signal and bkg processes for realistic reach
- DP analysis: Csl clustering

No bias, narrow resolutions

Csl(TI) calorimeter analysis

- Energy and timing obtained by pulse shape data from FADC (VF48)
- Events from the K⁺ decays were selected
- K_{µ2} events with single crystal hit used for the energy calibration
- Deposited muon energy used for energy calibration of each crystal

H. Ito et al., NIM A 901, 1 (2018)

Combining spectrometer + calorimeter

K_{π2} events selected by analyzing momentum and TOF (M²)

- π⁰ invariant mass reconstructed by selecting two-cluster events
- Large π⁺ / π⁰ opening angle observed to select K_{π2}
- Confirmed that the total
 E36 system works correctly and is consistent with E246

Preliminary

