

Physics Beyond Standard Model with Kaons at NA62

Cristina Lazzeroni

University of Birmingham on behalf of the NA62 collaboration

Physics of Fundamental Symmetries and Interactions - PSI2019

20-25 October 2019

Kaon physics at NA62

2008: NA62 Approval

2009-14: Detector R&D

2014: Pilot Run

2015: Commissioning Run

2016-18: Physics Run

After LS2: Physics Run

~200 participants, 30 institutions

NA62 main goal: precise measurement of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Broad physics programme: rare decays, precision measurements, searches for exotic particles

Rare Kaon decays: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

FCNC process with highest CKM suppression: **A** ~ $(m_t/m_w)^2 |V_{ts}^*V_{td}| \sim \lambda^5$

Hadronic matrix element related to measured quantity Free from hadronic uncertainties Exceptional SM precision Sensitive to New Physics

SM branching ratios Buras et al., JHEP 1511 (2015) 033

Mode	$BR_{SM} \times 10^{11}$
Κ⁺→π⁺νν(γ)	8.4±1.0
$K_L \rightarrow \pi^0 \nu \nu$	3.00±0.31

Sensitivity to new physics

Simplified Z,Z' models [JHEP 1511 (2015) 166] Littlest Higgs with T-parity [EPJ C76 (2016) 182] Custodial Randall-Sundrum [JHEP 0903 (2009) 108] MSSM non-MFV [PEPT 2016 123B02, JHEP 0608 (2006) 064 LVF models [Eur Phys J C (2017) 77] Correlations are model-dependent

 Models with CKM-like flavor structure
 Models with MEV

- Models with new flavorviolating interactions in which either LH or RH couplings dominate
 - -*Z*/*Z*′ models with pure LH/RH couplings
 - -Littlest Higgs with *T* parity
- Models without above constraints
 - -Randall-Sundrum

Experimental state of the art

 $BR(K^+ \to \pi^+ \nu \overline{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$

Phys. Rev. D 79, 092004 (2009) Phys. Rev. D 77, 052003 (2008) $BR(K^+ \to \pi^+ \nu \overline{\nu}) < 14 \times 10^{-10} @ 95\% \text{ CL}$

Phys. Lett. B 791, 156 (2019)

Timing between sub-detectors O(100 ps).

Kinematic rejection O(10⁴) for $K^+ \rightarrow \pi^+ \pi^0$ and $K \rightarrow \mu^+ \nu$. Photon veto: $\pi^0 \rightarrow \gamma \gamma$ decay suppression from $K^+ \rightarrow \pi^+ \pi^0$ (10⁷) Particle ID (RICH+LKr+HAC+MUV): muon suppression from $K \rightarrow \mu^+ \nu$ (10⁷)

NA62 data samples

Decay in flight technique

Process	Branching ratio
$K^+ ightarrow \pi^+ \pi^0(\gamma)$	0.2067
$K^+ \rightarrow \mu^+ \nu(\gamma)$	0.6356
$\mathrm{K}^+ \to \pi^+ \pi^+ \pi^-$	0.0558
$K^+ \to \pi^+\pi^- e^+\nu$	$4.25 \cdot 10^{-5}$

Kinematic signal identification
 +
 15 < P_π+ < 35 GeV/c
 Particle ID (Cherenkov detectors)
 Particle ID (Calorimeters, μ - veto)
 Photon veto

Selection

Selection:

- $K^+\text{-}\,\pi^+$ matching
- K^{+} decays in the decay volume

 π^+ identification (PID)

photon rejection

Multi-track rejection

Measured performances: GTK-KTAG-RICH timing: O(100 ps) $\sigma(m_{\text{miss}}^2) \sim 10^{-3} \text{ GeV}^2/c^4$ $\pi^+ \text{ ID: } \epsilon_{\mu} \sim 10^{-8}, \ \epsilon_{\pi^+} \sim 64\%$ $\pi^0 \text{ rej: } \epsilon_{\pi^0} \sim 1.4 \cdot 10^{-8}, p_{\pi^+} \epsilon [15,35] \text{ GeV/c}$

[pion/kaon 3-mom from STRAW/GTK, pion mass hypothesis]

Signal regions kept masked: blind analysis

Single Event Sensitivity (SES)

- $N_{\pi\nu\nu}^{exp} \implies$ Expected number of $\pi\nu\nu$ events
- $Br(\pi\nu\nu) \implies SM \pi\nu\nu$ branching ratio
- $N_{\pi\pi} \implies K^+ \rightarrow \pi^+ \pi^0$ from control $\pi \nu \nu$ -like selected without γ /multiplicity rejection
- $\epsilon_{\rm RV} \implies \pi \nu \nu$ loss due to γ /multi-track rejection because of random activity
- $\epsilon_{trigger} \implies PNN trigger efficiency$
- $A_{\pi\nu\nu,\pi\pi}$ \Rightarrow Monte Carlo acceptances for $\pi\nu\nu$ (~3.0%*) and $\pi^+\pi^0$ (~8.5%)
- Br($\pi\pi$) \implies PDG K⁺ $\rightarrow \pi^{+}\pi^{0}$ branching ratio

Computation in bins of pion momentum and instantaneous beam intensity

(* Vector Form Factors)

Efficiencies

[Intensity: measured event-by-event using GTK time sidebands]

2017 data after selection

Background from kaon decays in fiducial volume

"Upstream" background

Background evaluation

Process	Expected events
$K^+ \to \pi^+ \nu \overline{\nu} \ (SM)$	$2.16 \pm 0.12_{stat} \pm 0.26_{ext}$
$K^+ \to \pi^+ \pi^0(\gamma)$ IB	$0.29 \pm 0.03_{stat} \pm 0.03_{syst}$
$K^+ \to \mu^+ \nu_\mu(\gamma)$ IB	$0.15 \pm 0.02_{stat} \pm 0.04_{syst}$
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	$0.12 \pm 0.05_{stat} \pm 0.03_{syst}$
$K^+ \to \pi^+ \pi^- \pi^+$	$0.02 \pm 0.02_{syst}$
$K^+ \to \pi^+ \gamma \gamma$	$0.005 \pm 0.005_{syst}$
$K^+ \to l^+ \pi^0 \nu_l$	negligible
Upstream background	$0.9 \pm 0.2_{stat} \pm 0.2_{syst}$
Total background	$1.5 \pm 0.2_{stat} \pm 0.2_{syst}$

Background expectations validated in Control Regions on data

NA62 2017 data sample

Single Event Sensitivity:S.E.S. = $(3.89 \pm 0.21) \times 10^{-11}$ Expected $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ (SM) $2.16 \pm 0.12_{stat} \pm 0.26_{ext}$

K decays background $0.59 \pm 0.06_{stat} \pm 0.06_{syst}$ Upstream background $0.9 \pm 0.2_{stat} \pm 0.2_{syst}$ Total background $1.5 \pm 0.2_{stat} \pm 0.2_{syst}$

NA62 2017 data – opening the box

Result

2016 and 2017 data uncorrelated, both similar analysis techniques: results can be combined

2016+2017:

Upper Limits (CLs method):

ObservedExpected (background only)CL $Br(K^+ \to \pi^+ \nu \bar{\nu}) < 1.85 \times 10^{-10}$ $Br(K^+ \to \pi^+ \nu \bar{\nu}) < 1.32 \times 10^{-10}$ 90% $Br(K^+ \to \pi^+ \nu \bar{\nu}) < 2.44 \times 10^{-10}$ $Br(K^+ \to \pi^+ \nu \bar{\nu}) < 1.62 \times 10^{-10}$ 95%Two-sided 68% band: $Br(K^+ \to \pi^+ \nu \bar{\nu}) = (0.47^{+0.72}_{-0.47}) \times 10^{-10}$

Historical perspective

2017 Result in context

$$BR(K^+ \to \pi^+ \nu \nu) < 1.85 \times 10^{-10} @ 90 \% CL$$
$$BR(K^+ \to \pi^+ \nu \nu) = 0.47^{+0.72}_{-0.47} \times 10^{-10}$$

Constraints on the largest enhancements allowed by NP scenarios

Prospects for 2018 data set

2018 data analysis in progress (~2 x 2017 data)

On-going studies to increase signal efficiency

Presence of a new collimator in beam line: reduced background allows for increase in signal acceptance

Optimization of particle identification and kinematic selection

Improvement in kaon-pion association algorithm

Prospects after LS2

Take data at higher intensity, increase signal acceptance, reduce background contamination

- Models with CKM-like flavor structure

 Models with MFV
- Models with new flavorviolating interactions in which either LH or RH couplings dominate
 - -*Z*/*Z*′ models with pure LH/RH couplings
 - -Littlest Higgs with *T* parity
- Models without above constraints

 Randall-Sundrum

KOTO II, KLEVER > 2026 ~ 60 events, B/S=1 ~22% precision

NA62 at LS3: ~50 events, B/S=0.35 ~18% precision

Lepton Number / Lepton Flavour Violation

Analysis strategy:

- Main kinematical variable M(π⁻ l⁺ l⁺)
- Blind analysis
- Signal region $|M(\pi^{-}l^{+}l^{+}) M_{K}| < 3 \sigma(M)$
- CLs method to set upper limits on BR

Background:

 $K^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle -} \ \mu^{\scriptscriptstyle +} \ \mu^{\scriptscriptstyle +}$:

• Decay in flight (DIF) or misID $\pi^+ \longrightarrow \mu^+$

$K^{\scriptscriptstyle +} ightarrow \pi^{\scriptscriptstyle -} \, e^{\scriptscriptstyle +} \, e^{\scriptscriptstyle +}$:

- misID $e^- \rightarrow \pi^-$
- misID $\pi^+ \longrightarrow e^+$

Normalisation decay modes:

- $K^+ \rightarrow \pi^+ e^+ e^-$
- $K^+ \rightarrow \pi^+ \mu^+ \mu^-$

Upper limit at 90% CL: BR (K⁺ $\rightarrow \pi^- e^+ e^+$) < 2.2 * 10⁻¹⁰

Upper limit at 90% CL: BR (K⁺ $\rightarrow \pi^- \mu^+ \mu^+$) < 4.2 * 10⁻¹¹

Factor of 2-3 improvement wrt previous results Prospects with the full data sample (2016-2018): statistics x3

2484 candidates 8357 candidates

- $K^+ \rightarrow \pi^- \mu^+ e^+$, $K^+ \rightarrow \pi^+ \mu^- e^+$ SES ~5 x 10⁻¹¹ (factor ~5 improvement on BNL E865)
- $K^+ \rightarrow e^- \nu \mu^+ \mu^+$ SES ~5 x 10⁻¹¹ (first search)
- $K^+ \rightarrow \mu^- \nu e^+ e^+$ SES ~1 x 10⁻¹⁰ (factor ~100 improvement on PDG)

Heavy Neutral Leptons

HNL production in $K^+ \rightarrow \ell^+ N$

 $\Gamma(\mathbf{P}^{+} \rightarrow \boldsymbol{\ell}^{+} \mathbf{N}) = \Gamma(\mathbf{P}^{+} \rightarrow \boldsymbol{\ell}^{+} \boldsymbol{\nu}) \times \rho_{\boldsymbol{\ell}}(\mathbf{m}_{\mathbf{N}}) \times |\mathbf{U}_{\boldsymbol{\ell}\boldsymbol{\Delta}}|^{2}$

Data 2016–17, Numbers of K^+ decays in fiducial volume: $N_{k} = (1.17 \pm 0.01) \times 10^{12} \text{ e} + \text{ case}, N_{k} = (4.29 \pm 0.02) \times 10^{9} \text{ muon}$ case.

Squared missing mass: $m_{miss}^2 = (P_k - P_\ell)^2$

🗕 Data

 $K^+ \rightarrow e^+ v$.

10⁵

 10^{4}

 $BR = 1.6 \times 10^{-5}$

1.19M candidates

 $K^+ \rightarrow \mu^+ \nu$,

u⁺→e⁺vv

K⁺→e⁺v

K⁺→μ⁺ν

 $\pi^+ \rightarrow e^+ v$

 $\pi^+ \rightarrow \mu^+ \nu$

 $\pi^+ \rightarrow \mu^+ \nu$ (upstream)

Conclusions

2016+2017 result:

$$Br(K^+ \to \pi^+ \nu \bar{\nu}) < 1.85 \times 10^{-10} @ 90\% CL$$

$$Br(K^+ \to \pi^+ \nu \bar{\nu}) = (0.47^{+0.72}_{-0.47}) \times 10^{-10}$$

Constraints on the largest enhancements allowed by NP models 2018 data analysis on-going

Excellent prospects for after LS2

Broad physics programme to be explored with existing and future data sets:

rare kaon decays, precision measurements of branching ratios and form factors, tests of Lepton Number/ Flavour violation, searches for exotic particles

Limits on HNL and LNV/LFV

Additional material

Dark Photon

Minimal A' scenario
$$\operatorname{BR}\left(\pi^{0} \to A'\gamma\right) = 2\epsilon^{2}\left(1 - \frac{m_{A}^{2}}{m_{\pi^{0}}^{2}}\right)^{3} \times \operatorname{BR}\left(\pi^{0} \to \gamma\gamma\right)$$

pure, intense π^0 beam of known momentum from $K^+ \rightarrow \pi^+ \pi^0$ decays

Signal signature: π^0 tagging, one photon + missing momentum, no further activity $BR(\pi^0 \to A'\gamma) = BR(\pi^0 \to \gamma\gamma) \frac{n_{sig}}{n_{\pi^0}} \frac{1}{\varepsilon_{sel}\varepsilon_{trg}\varepsilon_{mass}}$

Data from 2016, $n_{\pi 0} \sim 412 \text{ M} \pi^0 \text{s}$ tagged from $K_{2\pi}$ decays (~1% of full data set) Search for a peak around $M_{A'}^2$ from $M_{\text{miss}}^2 = (p_K - p_{\pi^+} - p_{\gamma})^2$

Prospects with full data set: expected yield increased by O(100)

Result

2017:

Upper Limits (CLs method):

ObservedExpected (background only) $Br(K^+ \to \pi^+ \nu \bar{\nu}) < 1.76 \times 10^{-10}$ $Br(K^+ \to \pi^+ \nu \bar{\nu}) < 1.41 \times 10^{-10}$ $Br(K^+ \to \pi^+ \nu \bar{\nu}) < 2.11 \times 10^{-10}$ $Br(K^+ \to \pi^+ \nu \bar{\nu}) < 1.76 \times 10^{-10}$

CL

90%

95%

Two-sided 68% band: $Br(K^+ \to \pi^+ \nu \bar{\nu}) = (0.20^{+0.69}_{-0.20}) \times 10^{-10}$

2016+2017:

Upper Limits (CLs method):

ObservedExpected (background only)CL $Br(K^+ \to \pi^+ \nu \bar{\nu}) < 1.85 \times 10^{-10}$ $Br(K^+ \to \pi^+ \nu \bar{\nu}) < 1.32 \times 10^{-10}$ 90% $Br(K^+ \to \pi^+ \nu \bar{\nu}) < 2.44 \times 10^{-10}$ $Br(K^+ \to \pi^+ \nu \bar{\nu}) < 1.62 \times 10^{-10}$ 95%Two-sided 68% band: $Br(K^+ \to \pi^+ \nu \bar{\nu}) = (0.47^{+0.72}_{-0.47}) \times 10^{-10}$