Update on the BL2 in-beam measurement of the neutron lifetime

Jimmy Caylor For the BL2 collaboration

24 Oct 2019 – Physics of Fundamental Symmetries and Interactions (PSI 2019) Paul Scherrer Institute, Switzerland

Motivation

• CKM Unitarity – Check for beyond the Standard Model physics

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

- V_{ud} from measuring the neutron lifetime, τ_n , and beta decay correlation coefficients.
- Big Bang Nucleosynthesis
 - τ_n is the largest uncertainty in n/p ratio calculations

Current state of the neutron lifetime:

NCNR and experimental apparatus

Beam method experiment

- Challenges
 - Low proton rate in the presence of background
 - Must accurately measure the decay volume
 - Measure the neutron density in the trap volume

$$\frac{\dot{N}_p}{\dot{N}_n} = \tau_n^{-1} \left(\frac{\epsilon_p}{\epsilon_o}\right) (nl + L_{end})$$

- Electrode Proton Trap
 - Manufactured of 16 fused quartz electrodes with an evaporated gold coating
 - Measured accuracy of 5µm and change in length ~.01% when cold
 - protons trapped with 100% efficiency in the middle of trap, <100% Trapped in "end region"

Neutron Flux Monitor

- ${}^{6}Li(n,t) {}^{4}He$
 - Neutron capture process
 - Detect a triton and alpha particle for every captured neutron
 - Energies ~few MeV per particle make them easy to detect
- Neutron counting efficiency

$$\epsilon_o = \frac{2N_A\sigma_o}{4\pi A} \iint \Omega(x,y)\,\rho(x,y)\phi(x,y)dxdy$$

• Dependent on measuring the neutron capture cross section

Alpha-Gamma Methodology

- Capture on thin Boron:
 - $n + {}^{10}B \rightarrow {}^{7}Li^* + \alpha + 2.798 MeV$
 - (BR=93.7%) transfers calibration to HPGe's
- Gammas from neutron capture on totally absorbing Boron target give beam flux (branching ratio cancels)
- <0.1% precision in ~4 weeks</p>

Cross-checks of Alpha-Gamma

J. Caylor (University of Tennessee)

- ²³⁵U(n,f) cross section precisely known to 0.2%
- Standard ref. material allows us to obtain the mass of ²³⁵U deposit

•
$$\sigma_{U235(n,f)} = \frac{r_f}{R_n \rho_U A_{\text{beam}} \Omega_{\text{FM}}}$$

• Independent measurement that directly measures systematics

- Measurement campaign directly compares Li target capture rates
- Standard IDMS technique destroys one target to precisely determine Li mass, ⁶Li/⁷Li ratio
- Determine cross section from known masses, signal rates of all targets.

Trapezoid Filter Analysis

- Uses a convolution for pulse shape discrimination
- Retains information from the original pulse

mid vt

141666

5670

598.3

1432

141.2

Wavefor 10[°]

0

2000

4000

One proton

Entries

Mean x

Mean y

RMS x

RMS v

Three protons

Short Midpoint of Trap Filte

• Able to identify multiple proton events

Midpoint v Time Bin

Two protons

2000

1600

1400

1200

1000

800

600

400

200

One proton

⊫ 1800

6000

8000

Comparison between BL1 and BL2 data quality

- Better signal to noise
- Better energy and timing resolution

Proton Systematics to check

Protons	Test	
Different trapping times (3, 5, 10, 20 and 30+ ms)	Proton loss mechanisms in trap; dead time correction	
Run with different B fields	Proton transport; loss of protons in trap	
Different beam collimations	Proton transport; sampling of different trap volume	
Silicon detector type/manufacturer; acceleration voltage	Backscattering determination	
Silicon detector size; neutron beam imaging; detector alignment	Proton loss due to neutron beam halo; proton loss due to misalignments	
Different mirror sizes	Demonstrate that 3 is sufficient and understood	
Do 3-electrode scan of trap	Uniformity of trap; comparison with calculation	
Vary ramp voltage	Efficiency of flushing of trap	
Vary door/mirror voltage	Trap efficiency; calculation of protons born in E field	
Operate two traps: Mark II and Mark III	Trap-dependent loss	
Verify with simulation everything possible	Understanding of particle dynamics (and potential loss)	
More sophisticated treatment of proton backscattering	Understanding of backscattering	

Neutron Systematics to check

Neutrons	Test	
With and without Si wafer in beam	Test Si corrections	
Measure wavelength and intensity distributions	Improved determination of absorption correction	
Vary 1/v configuration (deposit orientation)	Test neutron counting and corrections	
Run with different Li deposits	Test deposit/mass specific corrections; rate effects	
Run with B deposit(s)	Test mass specific corrections	

Proton detector alignment

• 1 and 2D detector scans to check alignment with trapped protons

J. Caylor (University of Tennessee)

3-electrode scan of trap

- Checks uniformity of trapping region
 - Depends on trapping length and magnetic field shape

J. Caylor (University of Tennessee)

Summary

- Neutron lifetime is needed for tests of CKM Unitarity
- Neutron lifetime is an important input parameter to Big Bang nucleosynthesis calculations
- Finished commissioning experiment in 2018
- Currently taking production data and making systematic checks
- Continue running through (at least) 2020

BL2 Collaboration

E. Adamek¹, E. S. Anderson², R. Biswas⁶, J. Caylor¹, B. Crawford³, M. S. Dewey⁴, N. Fomin¹, D. M. Gilliam⁴, K. Grammer⁵, G. L. Greene^{1,5}, C. Haddock⁴ R. Haun⁶, S. F. Hoogerheide⁴, H. P. Mumm⁴, J. S. Nico⁴, W. M. Snow², and F. E. Wietfeldt⁶

University of Tennessee
Indiana University
Gettysburg College
National Institute of Standards and Technology
Oak Ridge National Laboratory
Tulane University

OAK RIDGE National Laboratory

National Science Foundation

Supported by:

J. Caylor (Universitv of Tennessee)

Backup Slides

2005 Measurement Uncertainty Budget

Source of correction	Correction (s)	Uncertainty (s)
⁶ LiF deposit areal density		2.2
⁶ Li cross section		1.2
Neutron detector solid angle		1.0
Absorption of neutrons by ⁶ Li	+5.2	0.8
Neutron beam profile and detector solid angle	+1.3	0.1
Neutron beam profile and ⁶ Li deposit shape	-1.7	0.1
Neutron beam halo	-1.0	1.0
Absorption of neutrons by Si substrate	+1.2	0.1
Scattering of neutrons by Si substrate	-0.2	0.5
Trap nonlinearity	-5.3	0.8
Proton backscatter calculation		0.4
Neutron counting dead time	+0.1	0.1
Proton counting statistics		1.2
Neutron counting statistics		0.1
Total	-0.4	3.4

Alpha-Gamma Process

- 1. Calibrate ${}^{239}Pu$ source
- 2. Insert *Pu* source in Alpha-Gamma and measure alpha detector solid angle
- 3. Insert thin Boron foil and calibrate gamma detector efficiency
- 4. Insert thick Boron foil to stop and count every neutron

Neutron beam halo and neutron absorption

- Neutron Absorption in ⁶Li
 - Use multiple, thinner ⁶Li deposits
 - Measured wavelength spectrum on new beamline
 - Better able to make $\frac{1}{v}$ correction
- Neutron Beam Halo
 - Artifact of previous measurement technique
 - Unnecessarily added uncertainty to the previous result
 - Larger proton detector and better imaging techniques

DAQ digitization and Beamline Upgrades

- DAQ
 - Previous analysis method did not save any proton waveforms
 - New DAQ digitizes both preamp and specamp waveforms for every threshold passing
 - Allows for more detailed offline analysis
- Beamline
 - Previous experiment ran on NG-6 at NIST
 - New experiment running on NG-C and has greater neutron flux
 - Curved guide -> less background, no direct sight to reactor

Electrode Trap Nonlinearity

- Previous measurement took a significant amount of data at 10 central electrodes
 - Largest correction to the 2005 result (-5.3s)
- New measurement will not use trap lengths that exceed 9 trap lengths

Sequence of Trapping Cycle

- One cycle lasts 10,000µs
 - Ous the detector is turned on, in trapping mode
 - 22µs counting mode is engaged
 - 98µs cleaning mode engaged
 - 128µs returns to trapping mode for remainder of cycle
 - 160 μ s detector is turned off
- Only have the detector turned on when we are expecting trapped protons to arrive reduces the backgrounds

Alpha and Triton Peaks

25

• Measure proton rate

$$\dot{N}_p = \tau_n^{-1} \epsilon_p L \int_A da \int I(v) \frac{1}{v} dv$$

• Measure neutron rate

$$\dot{N}_{n} = v_{o}\epsilon_{o} \int_{A} da \int I(v)\frac{1}{v}dv$$
$$\epsilon_{o} = \frac{2N_{A}\sigma_{o}}{4\pi A} \iint \Omega(x, y) \rho(x, y)\phi(x, y)dxdy$$

NG-C Wavelength Measurement

- Cavlor (University of Tennessee)