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Motivation

• CKM Unitarity – Check for beyond the Standard Model physics
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• 𝑉𝑢𝑑 from measuring the neutron lifetime, 𝜏𝑛, and beta decay correlation coefficients. 

• Big Bang Nucleosynthesis 

• 𝜏𝑛 is the largest uncertainty in n/p ratio calculations
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Current state of the neutron lifetime: 
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NCNR and experimental 
apparatus
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Beam method experiment

• Challenges 
• Low proton rate in the presence of 

background

• Must accurately measure the 
decay volume

• Measure the neutron density in 
the trap volume

• Electrode Proton Trap
• Manufactured of 16 fused quartz 

electrodes with an evaporated gold 
coating

• Measured accuracy of 5µm and 
change in length ~.01% when cold

• protons trapped with 100% efficiency 
in the middle of trap, <100% Trapped 
in “end region”
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Neutron Flux Monitor

• 6𝐿𝑖(𝑛, 𝑡) 4𝐻𝑒
• Neutron capture process

• Detect a triton and alpha particle for every captured neutron

• Energies ~few MeV per particle make them easy to detect

• Neutron counting efficiency 

𝜖𝑜 =
2𝑁𝐴𝜎𝑜
4𝜋𝐴

ඵ𝛺 𝑥, 𝑦 𝜌 𝑥, 𝑦 𝜙 𝑥, 𝑦 𝑑𝑥𝑑𝑦

• Dependent on measuring the neutron capture cross section
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• Uses 239Pu 𝛼 source to calibrate SBD

• Capture on thin Boron: 
• 𝑛 + 10𝐵 → 7𝐿𝑖∗ + 𝛼 + 2.798𝑀𝑒𝑉

• (BR=93.7%) transfers calibration to HPGe’s

• Gammas from neutron capture on totally 
absorbing Boron target give beam flux 
(branching ratio cancels)

• <0.1% precision in ~4 weeks J. Caylor (University of Tennessee) 7

Alpha-Gamma Methodology
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Cross-checks of Alpha-Gamma
• Measurement campaign directly 

compares Li target capture rates

• Standard IDMS technique destroys one 
target to precisely determine Li mass, 
6Li/7Li ratio

• Determine cross section from known 
masses, signal rates of all targets.

• 235U(n,f) cross section precisely known to 
0.2%

• Standard ref. material allows us to obtain the 
mass of 235U deposit

• 𝜎𝑈235 𝑛,𝑓 =
𝑟𝑓

𝑅𝑛𝜌𝑈𝐴beamΩFM

• Independent measurement that directly 
measures systematics

235U deposit on Si 
substrate
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Trapezoid Filter Analysis
• Uses a convolution for pulse shape discrimination

• Retains information from the original pulse

• Able to identify multiple proton events
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Preamp pulse

Trapezoid filter output
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Comparison between BL1 and BL2 data quality 
• Better signal to noise

• Better energy and timing resolution
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Protons Test

Different trapping times (3, 5, 10 , 20 and 30+ ms) Proton loss mechanisms in trap; dead time correction

Run with different B fields Proton transport; loss of protons in trap

Different beam collimations Proton transport; sampling of different trap volume

Silicon detector type/manufacturer; acceleration voltage Backscattering determination

Silicon detector size; neutron beam imaging; detector alignment Proton loss due to neutron beam halo; proton loss due to misalignments

Different mirror sizes Demonstrate that 3 is sufficient and understood

Do 3-electrode scan of trap Uniformity of trap; comparison with calculation

Vary ramp voltage Efficiency of flushing of trap

Vary door/mirror voltage Trap efficiency; calculation of protons born in E field

Operate two traps: Mark II and Mark III Trap-dependent loss

Verify with simulation everything possible Understanding of particle dynamics (and potential loss)

More sophisticated treatment of proton backscattering Understanding of backscattering

Proton Systematics to check
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Neutrons Test

With and without Si wafer in beam Test Si corrections

Measure wavelength and intensity distributions Improved determination of absorption correction

Vary 1/v configuration (deposit orientation) Test neutron counting and corrections

Run with different Li deposits Test deposit/mass specific corrections; rate effects

Run with B deposit(s) Test mass specific corrections

Neutron Systematics to check
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Proton detector alignment 
• 1 and 2D detector scans to check 

alignment with trapped protons
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3-electrode scan of trap
• Checks uniformity of trapping region

• Depends on trapping length and magnetic field shape

• Able to compare to calculation
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Green = Ground, Yellow = Trapping Region, Blue = Door/Mirror
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Lifetime fit example
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S345-352, 25 kV
Τn ≈(XXX ±4) s
(statistical only)
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Summary

• Neutron lifetime is needed for tests of CKM Unitarity 

• Neutron lifetime is an important input parameter to Big Bang 
nucleosynthesis calculations

• Finished commissioning experiment in 2018

• Currently taking production data and making systematic checks

• Continue running through (at least) 2020
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2005 Measurement Uncertainty Budget
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1. Calibrate 239𝑃𝑢 source
2. Insert 𝑃𝑢 source in Alpha-

Gamma and measure 
alpha detector solid angle

3. Insert thin Boron foil and 
calibrate gamma detector 
efficiency 

4. Insert thick Boron foil to 
stop and count every 
neutron

Alpha-Gamma 
Process

1 3

2 4

239Pu
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Neutron beam halo and neutron absorption  

• Neutron Absorption in 6Li
• Use multiple, thinner 6Li deposits
• Measured wavelength spectrum on 

new beamline

• Better able to make 
1

𝑣
correction

• Neutron Beam Halo
• Artifact of previous measurement 

technique 
• Unnecessarily added uncertainty to the 

previous result
• Larger proton detector and better 

imaging techniques
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DAQ digitization and Beamline Upgrades
• DAQ

• Previous analysis method did not save any proton waveforms

• New DAQ digitizes both preamp and specamp waveforms for every threshold 
passing

• Allows for more detailed offline analysis 

• Beamline
• Previous experiment ran on NG-6 at NIST

• New experiment running on NG-C and has greater neutron flux

• Curved guide -> less background, no direct sight to reactor
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Electrode Trap Nonlinearity 

• Previous measurement took a significant 
amount of data at 10 central electrodes
• Largest correction to the 2005 result (-5.3s)

• New measurement will not use trap 
lengths that exceed 9 trap lengths
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Mark 3 Trap
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Sequence of Trapping Cycle

• One cycle lasts 10,000µs
• 0µs the detector is turned on, in trapping mode

• 22µs counting mode is engaged

• 98µs cleaning mode engaged

• 128µs returns to trapping mode for remainder of cycle

• 160µs detector is turned off

• Only have the detector turned on when we are expecting trapped 
protons to arrive reduces the backgrounds 

24J. Caylor (University of Tennessee)



Alpha and Triton Peaks
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• Measure proton rate

ሶ𝑁𝑝 = 𝜏𝑛
−1𝜖𝑝𝐿න
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𝑣
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• Measure neutron rate
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S. F. Hoogerheide

NG-C Wavelength Measurement
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Nearly “black” 6Li  in PMT Fission Chamber
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