Search for Physics Beyond the Standard Model...

...with β-\$ correlation in nuclear β decay

![Diagram of nuclear recoil measurement with 32Ar](image)

Proton peak shift measurement
- p and p' are detected in coincidence
- p' upwards, p nuclear recoil downwards

![Diagram of angular correlation coefficient](image)

Statistics:
- Higher beam intensity
- Better transmission through HBL and VBL
- Higher p detection sensitivity
- Larger solid angle

Systematics:
- Higher p detection resolution
- Thinner catcher foil
- Lower β detection threshold
- Systematics studies of backscattering

References:
1. [Adelberger et al., 1995, Phys. Rev. Lett. 75, 1390.](#)
2. [Savard et al., 2005, Phys. Rev. Lett. 94, 142501.](#)

Proof of Principle Experiment

Set up
- ISOLDE exp. Hall
- 30 keV 40Ar
- 7 cm molybdenum catcher foil
- 8 \times 300 μm Si detectors for p
- Plastic scintillator + PMT
- 8 to 4 \times
- 3h of beam time

Measured proton spectrum

Extraction of the angular correlation coefficient

Success of the proof-of-principle experiment: 3rd most precise measurement of a_{β}.

Short term: by 2021

Error budget: how to go to the 1% level

Long term

Funding:
- [AR: ER233-3249/32]
- [European Union’s 7th Framework Programme, Contract No. 262010 (ENSAR)]
- [Fermilab for Scientific Research F902]