

Method to search for axion-like particles at storage rings, demonstrated at COSY

Swathi Karanth on behalf of JEDI collaboration Institute of Physics, Jagiellonian University, Kraków, Poland

Axions or Axion-Like Particles (ALPs)

Proposed to explain the lack of CP violation in the strong interaction Axions

Candidate for dark matter in the universe

Plan for frequency scanning

Vary the spin precession frequency (f_{g-2}) in search of resonance. Ramp speed $\approx 0.1 \, \text{Hz/s}$ Compare initial and final polarization measurements.

Axion – gluon coupling

introduces an oscillating Electric Dipole Moment (EDM)

Light mass and weakly coupled to nucleons

Oscillating EDM allows us to search for ALPs in a storage ring.

Expected results

Simulations with a single bunch for 4 different phases 90° apart Resonance crossing speed 0.5 Hz/s Strength of oscillating EDM $1.6 \times 10^{-21} e \cdot cm$

Experimental setup

Unknown phase problem:

right frequency + right phase $\Rightarrow P_v$ accumulation \checkmark

right frequency + wrong phase $\Rightarrow P_v$ accumulation X

Solution Simultaneous searches with beams having perpendicular polarization.

2D plot of the time evolution of the beam in the ring

1.32

2.32

1.32

- Tests with RF Wien filter:
- Generate signal similar to axion.
- Calibrate polarization jumps.

See S. P. Chang et al., PRD 99, 083002 (2019

Axion Mass (eV)

Polarization direction of the 4 bunches in the horizontal plane in lab frame.

Phase measurement verifies the polarization pattern at the detector.

Email: swathi.karanth@doctoral.uj.edu.pl