Problem
- μ^- in matter form muonic atoms
- Nuclear capture: $\mu^- N \to \nu_\mu X$
 $X \equiv \gamma, \pi^0, \mu, \text{deuteron, ...}$

What are the yields and spectra?
- Relevance to CLFV: Mu2e, COMET will stop 10^{19} μ^-/s in aluminum (Al). Charged emissions near 100 MeV/c can deaden the tracker.
- Inform nuclear theory for momentum transfers 100 MeV/c $\lesssim Q \lesssim 300$ MeV/c.

Results [arXiv:1908.06902]

Data Analysis
- Event selection
 - Muon stops in target
 - Downstream hits after 400 ns ($\tau_{\mu-Al} = 861$ ns)
 - Veto beam accidentals

Normalization: e^- tracks from muon decay
- Known spectrum and branching fraction.
- Well understood acceptance \times efficiency
- Count stopped muons in the selected event sample
- Data/data and MC/MC uncertainty cancellations between electron and signal events.

Modified Software
- Short tracks
- Particle $\beta \approx 0.1$
- $dE/dx \gg$ MIP

reconstructed data and simulation fit

Particle ID:
About 1/3 of reconstructed positive tracks range out in the detector stack.
Track range observable: $R = (N \text{ crossed planes})/|\cos(\theta)|$

No PID for penetrating tracks, but use their momentum in the global fit.

Acknowledgments
This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Russian Ministry of Science, and the U.S.A. Department of Energy.