Charged particle spectra from μ^- capture on Al A. Gaponenko¹, A. Grossheim², A. Hillairet³, G.M. Marshall², R.E. Mischke², A. Olin^{2,3} 1 Fermilab, 2 TRIUMF, 3 U. of Victoria

PROBLEM

- μ^- in matter form muonic atoms
- Nuclear capture: $\mu^- N \rightarrow \nu_{\mu} X$ $X \ni \gamma, n, p,$ deuteron, ... What are the yields and spectra?
- Relevance to CLFV: Mu2e, COMET will stop $10^{10} \mu^{-}/s$ in aluminum (Al). Charged emissions near 100 MeV/c can deaden the tracker.
- Inform nuclear theory for momentum transfers 100 MeV/c $\leq Q \leq 300$ MeV/c.

RESULTS [ARXIV:1908.06902]

Dominant systematics: cross talk and dE/dx modeling.

Yield per capture (most precise measurement to date) $0.045 \pm 0.001(\text{stat}) \pm 0.003(\text{syst})$ $0.018 \pm 0.001(\text{stat}) \pm 0.001(\text{syst})$

± 0.001 (extrapolation)

± 0.002 (extrapolation)

TWIST DETECTOR AT TRIUMF

- Built for a 10^{-4} measurement of the μ^+ decay spectrum.
- Thin: 2 mg/cm² per wire chamber.
- One muon stop at a time in 71μ m Al foil.

Our data: special run with μ^- beam, 57M triggers.

DATA ANALYSIS

• Veto beam accidentals

Event selection

Particle ID:

- Muon stops in target • Downstream hits after 400 ns $(au_{\mu^{-}Al} = 861 \text{ ns})$
- **Modified software**
- Short tracks

COMPARISON WITH OTHERS

- Particle $\beta \approx 0.1$
- $dE/dx \gg \text{MIP}$
- **Normalization:** *e*⁻ tracks from muon decay
- Known spectrum and branching fraction.
- Well understood acceptance × efficiency
- Count stopped muons in the selected event sample
- Data/data and MC/MC uncertainty cancellations between electron and signal events.

Reconstructed data and simulation fit

UNFOLDING [ARXIV:1906.07918]

Regularized unfolding:

Maximize $\mathcal{F} = \log \mathcal{L}(\text{data}|f\}) + \alpha S\{f\}$

Likelihood of data

The standard lore

- Arbitrary f = spline.
- Regularization acts on *f*, bias to a straight line.
- uation outside of unfolding range.
- Our approach

70

60

- Arbitrary $f = g \times (1 + \text{spline})$, problem specific g may depend on fit parameters.
- Zero of fixed shape contin-• Regularize *deviation* from *g*, result biased to *q*.
 - Smooth continuation of fit outside of unfolding range.

Toy model example

About 1/3 of reconstructed positive tracks range out in the detector stack. Track range observable: $\mathcal{R} = (\text{N crossed planes}) / |\cos(\theta)|$ No PID for penetrating tracks, but use their momentum in the global fit.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Russian Ministry of Science, and the U.S.A. Department of Energy.