Optical cavity simulations for the HyperMu experiment

M. Marszalek

Hyperfine splitting in muonic hydrogen

Contributions to the hyperfine splitting

Contributions to the hyperfine splitting

$$\Delta_{\rm TPE} = \Delta_{\rm Z} + \Delta_{\rm recoil} + \Delta_{\rm pol}$$

$$\Delta_{\rm Z} = \frac{8Z\alpha m_r}{\pi} \int_0^\infty \frac{dQ}{Q} \left(G_E(Q^2) \frac{G_M(Q^2)}{1+\kappa_p} - 1 \right) = -2(Z\alpha)m_r R_Z$$

D

What's up at PSI?

The laser system at ETH – Manu & Karsten

Detectors - Laura

The cavity - Mirek

- Find the best geometry
- Optimize its parameters
- Estimate the performance

Simulations of the cavity

- Cavity geometries
- Methods of simulation
- Figures of merit
- Comparison of designs
- Summary

Cavity geometries

toroidal

Cavity geometries

Cavity geometries

- Gaussian beam propagation
- Ray tracing
- Diffraction integrals
- Maxwell equations

- Gaussian beam propagation
- Ray tracing
- Diffraction integrals
- Maxwell equations

Gaussian beams

Gaussian beams

Ray tracing

- Fast and simple
- Geometrical optics
- Is it accurate enough?

Gaussian beam in the phase space

Diffraction integrals

Fresnel integral in ID

$$E(x',z) = \frac{1}{i\sqrt{\lambda z}} \exp\left(\frac{2\pi i z}{\lambda}\right) \exp\left(\frac{\pi i}{\lambda z} x'^2\right) \int_{-\infty}^{+\infty} E(x,0) \exp\left(\frac{\pi i}{\lambda z} x^2\right) \exp\left(\frac{-2\pi i}{\lambda z} x x'\right) dx$$

Diffraction integrals

Fresnel integral in ID

$$E(x',z) = \frac{1}{i\sqrt{\lambda z}} \exp\left(\frac{2\pi i z}{\lambda}\right) \exp\left(\frac{\pi i}{\lambda z} x'^2\right) \int_{-\infty}^{+\infty} E(x,0) \exp\left(\frac{\pi i}{\lambda z} x^2\right) \exp\left(\frac{-2\pi i}{\lambda z} x x'\right) dx$$

- Scalar approximation
- Breaks down at high angles
- Can be numerically unstable

Figures of merit – losses in the cavity

$$E_{\text{tot}} = \frac{E_0}{1-R} = \frac{E_0}{L}$$

 $L \approx L_M + L_H + L_A$

D

Figures of merit – average fluence

D

$$P = 1 - \exp\left(-\frac{F}{F_s}\right)$$

For
$$F < F_s$$
: $P \propto F$

Figures of merit – signal-to-noise ratio

$$SNR = \frac{S}{\sqrt{B}}$$

$$S \propto FA$$

$$B \propto A$$

$$SNR \propto F\sqrt{A}$$

Þ

Toroidal cavity

Relevant parameters

Horizontal offset

Target diameter

Target diameter

Þ

Beam waist

Cylindrical cavity

Offset + tilt

Comparing losses

Comparing losses

Comparing losses

The toroidal cavity is impossible to be coated with a dielectric!

Mirror damage

$$F_{peak} = \frac{2E_0}{\pi w_x w_y}$$

Þ

 w_x , w_y - from Gaussian beam propagation

Mirror damage

$$F_{peak} = \frac{2E_0}{\pi w_x w_y}$$

 w_x , w_y - from Gaussian beam propagation

Diffraction analysis

Diffraction analysis

- We probably won't use the toroidal cavity, since it cannot have a good coating.
- It's time to order a test piece and verify the simulations.
- The final design will also depend on mechanical constraints (detectors, etc).