

Superconducting Materials and Applications R&D at Institute for Technical Physics at KIT

Prof. Dr.-Ing. Mathias Noe, Karlsruhe Institute of Technology (KIT), Institute for Technical Physics

Paul Scherrer Institut, Villigen, January 28th, 2019

KIT-ENERGY CENTRE

Superconducting and Cryo-Materials Bernhard Holzapfel	Energy Applications Mathias Noe	Superconducting Magnet Technology Walter Fietz	Fusion Fuel Cycle Technologies Christian Day	Physics and Techniques of Hydrogen Isotopologues Beate Bornschein
Superconducting Materials Jens Hänisch	Superconducting Power System Components Andrej Kudymow	Coil Technology Frank Hornung	Vacuum Technology and Integration Christian Day	Tritium Facilities and –processing Stefan Welte
Cryo-Structural Materials Klaus-Peter Weiss	New Applications of Superconductivity Sonja Schlachter	HTS-Fusion Magnets and Current Leads Walter Fietz	Tritium Extraction and Recovery Laetitia Frances	Tritium and Hydrogen Analytics Marco Röllig
Cryogenic Properties of Substances Steffen Grohmann	Modelling of Superconductors and Components Francesco Grilli	Rotating Machines Yingzhen Liu	Rarified Gas Dynamics Stylianos Varoutis	Physics of Hydrogen Isotopologues Robin Größle
Conductor and Wire Concepts Michael Wolf	Real-time System Integration Jörn Geisbüsch	Industry Applications Marion Kläser	Vacuum Hydraulics Thomas Giegerich	Search for New Physics Magnus Schlösser

Large Projects and Infrastructure KATRIN, Energy Lab 2.0 Tritium Laboratory Karlsruhe, High Field Laboratory, Cryo Experiments and Infrastructure, CryoMak Cryo-High Voltage Laboratory, CultKa, TOSKA, TIMO, SET-Laboratory, VACUUM Laboratory

Mathias Noe

Objectives and Approach

technology with unsurpassed properties.

Manpower (11.2018)

Total	203
Academics	66
Engineers and Technicians	60
Others	21
PhD students in 2018	24
Master students in 2018	17
DH-students in 2018	9
Apprentices in 2018	6
In addition in 2018	<u>66</u>
Guests	18
Internships	5
HiWis	38
Bachelor students	15

Strategic Development – New Professorship on Superconducting Magnet Technology

- Helmholtz Recruitment of excellent female scientists
 Status
- Person proposed and agreed by faculty
- KIT Senate decision in January 2019
- Q1 2019 invitation for concept discussion
- Q3 2019 start at KIT

Superconducting and Cryo-Materials	Energy Applications	Superconducting Magnet Technology	Fusion Fuel Cycle Technologies	Physics and Techniques of Hydrogen Isotopologues
Bernhard Hoizapier		Waller Fletz	Chinstian Day	Deale Domschein
Superconducting Materials Jens Hänisch	Superconducting Power System Components Andrej Kudymow	Coil Technology Frank Hornung	Vacuum Technology and Integration Christian Day	Tritium Facilities and –processing Stefan Welte
Cryo-Structural Materials Klaus-Peter Weiss	New Applications of Superconductivity Sonja Schlachter	HTS-Fusion Magnets and Current Leads Walter Fietz	Tritium Extraction and Recovery Laetitia Frances	Tritium and Hydrogen Analytics Marco Röllig
Cryogenic Properties of Substances Steffen Grohmann	Modelling of Superconductors and Components Francesco Grilli	Rotating Machines Yingzhen Liu	Rarified Gas Dynamics Stylianos Varoutis	Physics of Hydrogen Isotopologues Robin Größle
Conductor and Wire Concepts Michael Wolf	Real-time System Integration Jörn Geisbüsch	Industry Applications Marion Kläser	Vacuum Hydraulics Thomas Giegerich	Search for New Physics Magnus Schlösser

Large Projects and Infrastructure KATRIN, Energy Lab 2.0 Tritium Laboratory Karlsruhe, High Field Laboratory, Cryo Experiments and Infrastructure, CryoMak Cryo-High Voltage Laboratory, CultKa, TOSKA, TIMO, SET-Laboratory, VACUUM Laboratory

Enhanced *J*_c in YBa₂Cu₃O_x by Controlled Nanoengineering

J_c engineering by self organized defect structure formation (here Ba₂YNbO₆/Ba₂YTaO₆nanocolumns, Y₂O₃-nanoparticles, stacking faults) in Pulsed Laser deposited HTS films

Well-controlled arrangement of nanoengineered defects enable strongest pinning and therefore highest critical currents

Chemical Solution Deposition of High-Performance, Low-Cost Conductors

Highest J_c and low J_c anisotropy in CSD nanocomposites achieved

Superconducting and Cryo-Materials Bernhard Holzapfel	Energy Applications Mathias Noe	Superconducting Magnet Technology Walter Fietz	Fusion Fuel Cycle Technologies Christian Day	Physics and Techniques of Hydrogen Isotopologues Beate Bornschein
Superconducting Materials Jens Hänisch	Superconducting Power System Components Andrej Kudymow	Coil Technology Frank Hornung	Vacuum Technology and Integration Christian Day	Tritium Facilities and –processing Stefan Welte
Cryo-Structural Materials Klaus-Peter Weiss	New Applications of Superconductivity Sonja Schlachter	HTS-Fusion Magnets and Current Leads Walter Fietz	Tritium Extraction and Recovery Laetitia Frances	Tritium and Hydrogen Analytics Marco Röllig
Cryogenic Properties of Substances Steffen Grohmann	Modelling of Superconductors and Components Francesco Grilli	Rotating Machines Yingzhen Liu	Rarified Gas Dynamics Stylianos Varoutis	Physics of Hydrogen Isotopologues Robin Größle
Conductor and Wire Concepts Michael Wolf	Real-time System Integration Jörn Geisbüsch	Industry Applications Marion Kläser	Vacuum Hydraulics Thomas Giegerich	Search for New Physics Magnus Schlösser

Large Projects and Infrastructure KATRIN, Energy Lab 2.0 Tritium Laboratory Karlsruhe, High Field Laboratory, Cryo Experiments and Infrastructure, CryoMak Cryo-High Voltage Laboratory, CultKa, TOSKA, TIMO, SET-Laboratory, VACUUM Laboratory

Cryogenic Materials Investigation & Testing

Various Test Platforms

ATLAS axial ± 650 kN Test of "Full-Size" components

PHOENIX axial ±100 kN

PPMS Heat capacity

X-Ray Structural analysis

 $\begin{array}{l} \textbf{TORSION} \\ \text{axial} \ \pm \ 100 \ \text{kN} \\ \text{torsion} \pm 1000 \ \text{Nm} \end{array}$

INSTRON Fall-Testing

GADALBINI Charpy Testing

Cryogenic Materials Investigation & Testing CryoMaK is ITER reference lab

Examples for testing:

- Jacket (TF, PF, CC)
- Radial plates 316LN
- Winding Pack Mock-up
- TF-casing
- Helium HV-breaks
- TF He-inlet
- Insulation shear strength tests

Fatigue test at 4.2 K of TF coil He inlet

PF Winding Pack Mockup

MTS 25 & 50 cycling tests

Radial Plate welding mock-up

Cryogenic Materials Investigation & Testing

DFG focus program - High Entropy Alloy
 Reference material (HfNbTaTiZr – bcc) produced

International Cryogenic Material Library (ICML) ICML as main database for publications of cryogenic material database

> Founding comittee in Boulder, USA (Nov.2018) ICMC, NIST, NHFL (USA), NIMS, NIFS (Japan), **KIT** (Europe, Germany)

Superconducting and Cryo-Materials Bernhard Holzapfel	Energy Applications Mathias Noe	Superconducting Magnet Technology Walter Fietz	Fusion Fuel Cycle Technologies Christian Day	Physics and Techniques of Hydrogen Isotopologues Beate Bornschein
Superconducting Materials Jens Hänisch	Superconducting Power System Components Andrej Kudymow	Coil Technology Frank Hornung	Vacuum Technology and Integration Christian Day	Tritium Facilities and –processing Stefan Welte
Cryo-Structural Materials Klaus-Peter Weiss	New Applications of Superconductivity Sonja Schlachter	HTS-Fusion Magnets and Current Leads Walter Fietz	Tritium Extraction and Recovery Laetitia Frances	Tritium and Hydrogen Analytics Marco Röllig
Cryogenic Properties of Substances Steffen Grohmann	Modelling of Superconductors and Components Francesco Grilli	Rotating Machines Yingzhen Liu	Rarified Gas Dynamics Stylianos Varoutis	Physics of Hydrogen Isotopologues Robin Größle
Conductor and Wire Concepts Michael Wolf	Real-time System Integration Jörn Geisbüsch	Industry Applications Marion Kläser	Vacuum Hydraulics Thomas Giegerich	Search for New Physics Magnus Schlösser

Large Projects and Infrastructure KATRIN, Energy Lab 2.0 Tritium Laboratory Karlsruhe, High Field Laboratory, Cryo Experiments and Infrastructure, CryoMak Cryo-High Voltage Laboratory, CultKa, TOSKA, TIMO, SET-Laboratory, VACUUM Laboratory

13.03.18

Cryogenic Technologies – Comparison

State-of-the-art

Source: Decker, L.: Overview on cryogenic refrigeration cycles for large scale HTS applications. International Workshop on Cooling System for HTS Applications (IWC-HTS), October 14-16, 2015, Matsue, Japan

Cryogenic Technologies

Cryogenic mixed refrigerant cycles (CMRCs)

Heat transferred (-)

- $q_{AC.2}$ $q_{\rm AC,1}$ $l_{\rm t,1}$ 0 rates T_{a} ⊳ 0 CFHX I 350 CFHX I 300 EV 250 femperature (K) CFHX II 200 CFHX II 150 ΕV 헛 100 q_0 50 Evap 0.2 0.4 0.6 0.8
- Wide-boiling mixtures for adaptation of capacity flow rates
 - > Molecular engineering of fluid properties
 - Long-standing expertise of MRC-development at KIT–ITTK in cooperation with IIT Madras
 - Low pressure ($p \le 20$ bar)
 - No cold turbo-expanders
 - Inexpensive (standard refrigeration components)
 - Scalable
 - Good efficiency

13.03.18

Properties of Cryogenic Fluid Mixtures

- Systematic screening of non-flammable refrigerant mixtures
 - o Investigation of mixtures with 4th generation refrigerant R1234yf
 - Measurement of vapor-liquid (VLE) and vapor-liquid-liquid (VLLE) equilibria down to 150 K (limitation of existing apparatus)
 - Modeling and publication of equations of state
- New **Cryo**genic **Phase Equilibria Test Stand** (CryoPHAEQTS)
 - Temperature range **15 300 K**, maximum pressure **15 MPa**
 - Mixtures incl. flammable and oxidizing fluids (ATEX compliant)
 - Optical measurements in cooperation with FAU Erlangen
 - Dynamic light scattering (DLS) for measurement of thermal diffusivity, diffusion coefficient, speed of sound / sound attenuation
 - Surface light scattering (SLS) for measurement of viscosity and surface tension

Superconducting and Cryo-Materials Bernhard Holzapfel	Energy Applications Mathias Noe	Superconducting Magnet Technology Walter Fietz	Fusion Fuel Cycle Technologies Christian Day	Physics and Techniques of Hydrogen Isotopologues Beate Bornschein
Superconducting Materials Jens Hänisch	Superconducting Power System Components Andrej Kudymow	Coil Technology Frank Hornung	Vacuum Technology and Integration Christian Day	Tritium Facilities and –processing Stefan Welte
Cryo-Structural Materials Klaus-Peter Weiss	New Applications of Superconductivity Sonja Schlachter	HTS-Fusion Magnets and Current Leads Walter Fietz	Tritium Extraction and Recovery Laetitia Frances	Tritium and Hydrogen Analytics Marco Röllig
Cryogenic Properties of Substances Steffen Grohmann	Modelling of Superconductors and Components Francesco Grilli	Rotating Machines Yingzhen Liu	Rarified Gas Dynamics Stylianos Varoutis	Physics of Hydrogen Isotopologues Robin Größle
Conductor and Wire Concepts Michael Wolf	Real-time System Integration Jörn Geisbüsch	Industry Applications Marion Kläser	Vacuum Hydraulics Thomas Giegerich	Search for New Physics Magnus Schlösser

Large Projects and Infrastructure KATRIN, Energy Lab 2.0 Tritium Laboratory Karlsruhe, High Field Laboratory, Cryo Experiments and Infrastructure, CryoMak Cryo-High Voltage Laboratory, CultKa, TOSKA, TIMO, SET-Laboratory, VACUUM Laboratory

HTS High Current Cable Concepts

- Development and manufacturing of multistrand conductors for high current, low inductance, low AC loss applications
 - Stacks and Twisted Stacks

Roebel Cable

Conductor on Round Core

The HTS Cross Conductor - CroCo Concept

Successful demonstration and manufacturing of HTS CroCo's up to 8 m

High-Current HTS CroCo Cables

HTS CroCo is available as base strand in different sizes

Smallest 3/2 mm HTS CroCo I_c (4.2 K, 12 T) ≈ 5 kA !

Magnetic Field B (T)

High Current HTS CroCo Cables

Test of 35 kA DC test cable with 12 Cross Conductor Cables

Manufacturing of HTS Roebel Cables CERI Roebel cable concept requires complex fabrication steps Multi- or one step Cable assembly Transpositon length punching process Original tape spacing - Strand Rest number tape for Roebel 5.5 30 Grad 125.80 mm - Strand width 50.0 mm Reel-to-reel manufacturing process Point of cabling Punching die 0 0 Roll with Roll with RFBC

Precise long-length cable punching (100 m demonstrated) for sharp damage-free cuts!

Roebel Cable Transport Properties

P. Gao et al. Effect of tape layout and impregnation method on transverse pressure dependence of critical current in REBCO Roebel cables. Presented at the 2016 ASC, Denver, USA. 2016

Impregnated Roebel cables show high critical currents and withstand transverse pressure in excess of 150 MPa

Quench Simulation of Roebel Cable

10 strands

- Applied current 10x100 A
- Temperature 77 K

result	heat pulse	ρ _a	
quench	0.2 J	Ø	simulation 1
	0.2 J	0.27 μΩm	simulation 2
	0.3 J	0.27 μΩm	simulation 3

Roebel Cable Based Dipole Magnets

Subsize dipole magnet prototype coil (CERN)

Successful realization and test of prototype dipole magnet coils using Roebel cables

Superconducting and Cryo-Materials	Energy Applications	Superconducting Magnet Technology	Fusion Fuel Cycle Technologies	Physics and Techniques of Hydrogen Isotopologues
Bernhard Holzapier		Waller Fielz	Chinslian Day	
Superconducting Materials Jens Hänisch	Superconducting Power System Components Andrej Kudymow	Coil Technology Frank Hornung	Vacuum Technology and Integration Christian Day	Tritium Facilities and –processing Stefan Welte
Cryo-Structural Materials Klaus-Peter Weiss	New Applications of Superconductivity Sonja Schlachter	HTS-Fusion Magnets and Current Leads Walter Fietz	Tritium Extraction and Recovery Laetitia Frances	Tritium and Hydrogen Analytics Marco Röllig
Cryogenic Properties of Substances Steffen Grohmann	Modelling of Superconductors and Components Francesco Grilli	Rotating Machines Yingzhen Liu	Rarified Gas Dynamics Stylianos Varoutis	Physics of Hydrogen Isotopologues Robin Größle
Conductor and Wire Concepts Michael Wolf	Real-time System Integration Jörn Geisbüsch	Industry Applications Marion Kläser	Vacuum Hydraulics Thomas Giegerich	Search for New Physics Magnus Schlösser

Large Projects and Infrastructure KATRIN, Energy Lab 2.0 Tritium Laboratory Karlsruhe, High Field Laboratory, Cryo Experiments and Infrastructure, CryoMak Cryo-High Voltage Laboratory, CultKa, TOSKA, TIMO, SET-Laboratory, VACUUM Laboratory

and Energy

AmpaCity Cable

- Worldwide longest and fully operational superconducting cable (1 km, 40 MVA, 10 kV) with resistive-type superconducting fault current limiter
- KIT Tasks: Develop a three phase model cable with YBCO tapes, software tool for simulation and modeling, economic evaluation
- Successful continuous operation since April 2014, operation ongoing

Field test demonstrated that all operational requirements are fulfilled

2015 German Prize for Innovation in Climate and Environment

for the AmpaCity Project, Category Technologies

30

Modular High Current Busbar

908 3.2 14×14 - 010130196

- Development and test at industry fabrication site of a 20 kA, 25 m modular DC high current busbar system
- KIT Tasks: Electromagnetic design, joint manufacturing and busbar testing

Low-resistivity joint (1 nOhm at 20 kA)

Federal Ministry for Economic Affairs and Energy

Worldwide first HTS modular busbar industry installation

Subscale test

at 20 kA

Mechanical test

ILK Dresden

Air Coil Limiter

- Development and laboratory test of a 10 kV, 10 MVA air coil limiter type SCFCL
- KIT Tasks: Superconducting component test, cryostat design and real-time modelling

Federal Ministry for Economic Affairs and Energy

First-of-a-kind successful large-scale demonstration of patented fault current limiter technology

Air Coil Limiter

- Development and laboratory test of a 10 kV, 10 MVA air coil limiter type SCFCL
- KIT Tasks: Superconducting component test, cryostat design and real-time modelling

C. Schacherer, et. al. "SmartCoil—Concept of a Full-Scale Demonstrator of a Shielded Core Type Superconducting Fault Current Limiter, IEEE Transactions on Applied Superconductivity, Vol. 27, Nr. 4, June 2017, doi: 10.1109/TASC.2016.2642139

First-of-a-kind successful large-scale demonstration of patented fault current limiter technology

Fault Current Limiting Transformer

- Development and laboratory test of a 1MVA current limiting transformer with recovery under load
- KIT Tasks: Development of Superconducting winding and cryostat, transformer test

Name	Value	
Nominal power	577.4 kVA	
Voltage and current primary	20 kV	
Cu winding	28.9 A	
Voltage and current secondary	1 kV	
superconducting winding	577.4 A	
Fault duration	60 ms	
Current limitation 1st HW	13.55 kA	
Limitation 1st HW	71.4 %	
Current limitation 6th HW	6.5 kA	

S. Hellmann, M. Abplanalp, L. Hofstetter, M. Noe

Conceptual Design, Manufacturing and Test of a 1MVA Class Superconducting Fault Current Limiting Transformer with Recovery-under-Load Capabilities IEEE Transactions on Applied Superconductivity, 27, 4, June 2017, DOI: 10.1109/TASC.2017.2652493

Fault Current Limiting Transformer

- Development and laboratory test of a 1MVA current limiting transformer with recovery under load
- KIT Tasks: Development of Superconducting winding and cryostat, transformer test

Patent Application: Transformator, Wickelkörper dafür und Verfahren zur Herstellung eines Wickelkörpers, Hellmann, Sebastian, DE 102015114208.2, WO PCT/EP2016/001412

Successful laboratory test of highly efficient demonstrator

Superconducting and Cryo-Materials Bernhard Holzapfel	Energy Applications	Superconducting Magnet Technology Walter Fietz	Fusion Fuel Cycle Technologies Christian Dav	Physics and Techniques of Hydrogen Isotopologues Beate Bornschein
Superconducting Materials Jens Hänisch	Superconducting Power System Components Andrej Kudymow	Coil Technology Frank Hornung	Vacuum Technology and Integration Christian Day	Tritium Facilities and –processing Stefan Welte
Cryo-Structural Materials Klaus-Peter Weiss	New Applications of Superconductivity Sonja Schlachter	HTS-Fusion Magnets and Current Leads Walter Fietz	Tritium Extraction and Recovery Laetitia Frances	Tritium and Hydrogen Analytics Marco Röllig
Cryogenic Properties of Substances Steffen Grohmann	Modelling of Superconductors and Components Francesco Grilli	Rotating Machines Yingzhen Liu	Rarified Gas Dynamics Stylianos Varoutis	Physics of Hydrogen Isotopologues Robin Größle
Conductor and Wire Concepts Michael Wolf	Real-time System Integration Jörn Geisbüsch	Industry Applications Marion Kläser	Vacuum Hydraulics Thomas Giegerich	Search for New Physics Magnus Schlösser

Large Projects and Infrastructure KATRIN, Energy Lab 2.0 Tritium Laboratory Karlsruhe, High Field Laboratory, Cryo Experiments and Infrastructure, CryoMak Cryo-High Voltage Laboratory, CultKa, TOSKA, TIMO, SET-Laboratory, VACUUM Laboratory

Electric Aircraft

- Develop and test key elements of superconducting infrastructure for future electric aircraft
- KIT Tasks: Design and demonstration of low-weight, high-current cable, support generator demonstrator application
 Courtesy: Airbus

Pioneering R&D for key components of future electric aircraft Setup of cable test facility for 40 MW, 20 m cable demonstrators at variable temperature

Electric Aircraft

- 40 MW compact cable development
 - Cable design finished
 - Lorentz force test successful
 - Low ohmic joints
 - Design for compact cryostat

Cable design as dummy with 10 Cu- and SS tapes

AC-Lorentz force test at 2 pole dummy cable, 10 half waves, I_{peak} = 19.5 kA, LN₂

Superconducting and Cryo-Materials Bernhard Holzapfel	Energy Applications Mathias Noe	Superconducting Magnet Technology Walter Fietz	Fusion Fuel Cycle Technologies Christian Day	Physics and Techniques of Hydrogen Isotopologues Beate Bornschein
Superconducting Materials Jens Hänisch	Superconducting Power System Components Andrej Kudymow	Coil Technology Frank Hornung	Vacuum Technology and Integration Christian Day	Tritium Facilities and –processing Stefan Welte
Cryo-Structural Materials Klaus-Peter Weiss	New Applications of Superconductivity Sonja Schlachter	HTS-Fusion Magnets and Current Leads Walter Fietz	Tritium Extraction and Recovery Laetitia Frances	Tritium and Hydrogen Analytics Marco Röllig
Cryogenic Properties of Substances Steffen Grohmann	Modelling of Superconductors and Components Francesco Grilli	Rotating Machines Yingzhen Liu	Rarified Gas Dynamics Stylianos Varoutis	Physics of Hydrogen Isotopologues Robin Größle
Conductor and Wire Concepts Michael Wolf	Real-time System Integration Jörn Geisbüsch	Industry Applications Marion Kläser	Vacuum Hydraulics Thomas Giegerich	Search for New Physics Magnus Schlösser

Large Projects and Infrastructure KATRIN, Energy Lab 2.0 Tritium Laboratory Karlsruhe, High Field Laboratory, Cryo Experiments and Infrastructure, CryoMak Cryo-High Voltage Laboratory, CultKa, TOSKA, TIMO, SET-Laboratory, VACUUM Laboratory

State of the Art and Open Challenges

- 2D electromagnetic and thermal modeling well developed
 - Different formulations of Maxwell's equations + thermal equations
 - Different software implementation (commercial, home-made)
- Challenges:

HTS MODELLING

WORKGROUP

- Integrate the superconductor model into simulation of complex devices (e.g. electrical machines)
- Extend models to 3D and make them routinely usable
- Make models reliable, available and benchmarked

Modelling of high temperature superconductors (HTS)

www.htsmodelling.com

Francesco Grilli The ASUMED Project: Modeling HTS Coils and Stacks for Aviation

- Advanced Superconducting Motor Experimental Demonstrator
- Fully superconducting machine
 - Rotor: HTS coils
 - Generation (4 times higher than conventional)
 Stator: HTS tape stacks as permanen (Magnetic flux density norm (T))
- Power density 20 kW/kg
- Prototype:
 - ~1 MW power at 10,000 rpm
 - Thermal loss <0.1%</p>
- http://asumed.oswald.de/

Numerical modeling will allow the first detailed AC loss evaluation in a fully superconducting machine

2.5

2

- Development of "Do it all" model Magnetic flux density (T) Current density J/Jc 1.53.5 3 2.5 0.5 2 0 1.5 -0.5 -1 0.5 -1.5 UNIVERSITY OF OSWALD **Air Liquide Rolls-Royce** R **DEMACO SuperOx** hochschule aschaffenburg
- Advanced Superconducting Motor Experimental Demonstrator

Francesco Grilli The ASUMED Project: **Modeling HTS Coils and Stacks for Aviation**

Electromagnetic-Thermal Modeling

 Electrodynamic behavior of HTS magnets (homogenized *T-A* formulation)

Current density and magnetic field distribution in a 400-turn magnet (90 min charge/discharge). Modeling of magnetic levitation with deforming mesh

Current density Jphi/Jc

Levitation of a permanent magnet above a superconducting bulk. Currents induced in the bulks are displayed.

Francesco Grilli High-Speed Fluorescent Thermal Imaging of HTS Tapes

Copper terminal

Francesco Grilli High-Speed Fluorescent Thermal Imaging of HTS Tapes

Fast imaging of temperature evolution in HTS tapes

Superconducting and Cryo-Materials	Energy Applications	Superconducting Magnet Technology	Fusion Fuel Cycle Technologies	Physics and Techniques of Hydrogen Isotopologues
Deminaru noizapier	Mathias Noe	VValler Fielz	Chinstian Day	Deale Domschein
Superconducting Materials Jens Hänisch	Superconducting Power System Components Andrej Kudymow	Coil Technology Frank Hornung	Vacuum Technology and Integration Christian Day	Tritium Facilities and –processing Stefan Welte
Cryo-Structural Materials Klaus-Peter Weiss	New Applications of Superconductivity Sonja Schlachter	HTS-Fusion Magnets and Current Leads Walter Fietz	Tritium Extraction and Recovery Laetitia Frances	Tritium and Hydrogen Analytics Marco Röllig
Cryogenic Properties of Substances Steffen Grohmann	Modelling of Superconductors and Components Francesco Grilli	Rotating Machines Yingzhen Liu	Rarified Gas Dynamics Stylianos Varoutis	Physics of Hydrogen Isotopologues Robin Größle
Conductor and Wire Concepts Michael Wolf	Real-time System Integration Jörn Geisbüsch	Industry Applications Marion Kläser	Vacuum Hydraulics Thomas Giegerich	Search for New Physics Magnus Schlösser

Large Projects and Infrastructure

KATRIN, Energy Lab 2.0 Tritium Laboratory Karlsruhe, High Field Laboratory, Cryo Experiments and Infrastructure, CryoMak Cryo-High Voltage Laboratory, CultKa, TOSKA, TIMO, SET-Laboratory, VACUUM Laboratory

Energy Lab 2.0 at KIT: Microgrid and Power Hardware in the Loop

Main features

- Modular
- Fully interconnected
- Sector coupling
- Big data

Plus separate

PHIL training station

and

Residential Smart Home PHIL Lab

System Integration with Air Coil Limiter

- Accelerate system integration of new power network technologies
- KIT Tasks: Development of real-time models and Power-Hardware-in-the-Loop Tests

First real-time modeling of superconducting fault current limiters

Superconducting and Cryo-Materials Bernhard Holzapfel	Energy Applications Mathias Noe	Superconducting Magnet Technology Walter Fietz	Fusion Fuel Cycle Technologies Christian Day	Physics and Techniques of Hydrogen Isotopologues Beate Bornschein
Superconducting Materials Jens Hänisch	Superconducting Power System Components Andrej Kudymow	Coil Technology Frank Hornung	Vacuum Technology and Integration Christian Day	Tritium Facilities and –processing Stefan Welte
Cryo-Structural Materials Klaus-Peter Weiss	New Applications of Superconductivity Sonja Schlachter	HTS-Fusion Magnets and Current Leads Walter Fietz	Tritium Extraction and Recovery Laetitia Frances	Tritium and Hydrogen Analytics Marco Röllig
Cryogenic Properties of Substances Steffen Grohmann	Modelling of Superconductors and Components Francesco Grilli	Rotating Machines Yingzhen Liu	Rarified Gas Dynamics Stylianos Varoutis	Physics of Hydrogen Isotopologues Robin Größle
Conductor and Wire Concepts Michael Wolf	Real-time System Integration Jörn Geisbüsch	Industry Applications Marion Kläser	Vacuum Hydraulics Thomas Giegerich	Search for New Physics Magnus Schlösser

Large Projects and Infrastructure KATRIN, Energy Lab 2.0 Tritium Laboratory Karlsruhe, High Field Laboratory, Cryo Experiments and Infrastructure,CryoMak Cryo-High Voltage Laboratory,CultKa, TOSKA, TIMO, SET-Laboratory, VACUUM Laboratory

Coil Technology

- High Field High Temperature Insert Coil
 - YBCO Layer Winding
 - 5 T insert in 20 T LTS background field
 - Test coils confirmed mechanical stability and current carryig capability

Superconducting and Cryo-Materials Bernhard Holzapfel	Energy Applications Mathias Noe	Superconducting Magnet Technology Walter Fietz	Fusion Fuel Cycle Technologies Christian Day	Physics and Techniques of Hydrogen Isotopologues Beate Bornschein
Superconducting Materials Jens Hänisch	Superconducting Power System Components Andrej Kudymow	Coil Technology Frank Hornung	Vacuum Technology and Integration Christian Day	Tritium Facilities and –processing Stefan Welte
Cryo-Structural Materials Klaus-Peter Weiss	New Applications of Superconductivity Sonja Schlachter	HTS-Fusion Magnets and Current Leads Walter Fietz	Tritium Extraction and Recovery Laetitia Frances	Tritium and Hydrogen Analytics Marco Röllig
Cryogenic Properties of Substances Steffen Grohmann	Modelling of Superconductors and Components Francesco Grilli	Rotating Machines Yingzhen Liu	Rarified Gas Dynamics Stylianos Varoutis	Physics of Hydrogen Isotopologues Robin Größle
Conductor and Wire Concepts Michael Wolf	Real-time System Integration Jörn Geisbüsch	Industry Applications Marion Kläser	Vacuum Hydraulics Thomas Giegerich	Search for New Physics Magnus Schlösser

Large Projects and Infrastructure KATRIN, Energy Lab 2.0 Tritium Laboratory Karlsruhe, High Field Laboratory, Cryo Experiments and Infrastructure,CryoMak Cryo-High Voltage Laboratory, CultKa, TOSKA, TIMO, SET-Laboratory, VACUUM Laboratory

HTS Fusion Magnets and Current Leads

Development and Test of Current Leads for JT60-SA

6 CLs with 26 kA 20 CLS with 20 kA

HTS Fusion Magnets and Current Leads

Development and Test of Current Leads for JT60-SA

6 CLs with 26 kA 20 CLS with 20 kA

Development of REBCO HTS Current Lead

HTS Fusion Magnets and Current Leads

- HTS Conductor Concept and Winding Pack
 - Mechanical, electrical and hydaulic simulation okay
 - > 10 K temperature margin
 - Challenging quench detection

Superconducting and Cryo-Materials Bernhard Holzapfel	Energy Applications Mathias Noe	Superconducting Magnet Technology Walter Fietz	Fusion Fuel Cycle Technologies Christian Day	Physics and Techniques of Hydrogen Isotopologues Beate Bornschein
Superconducting Materials Jens Hänisch	Superconducting Power System Components Andrej Kudymow	Coil Technology Frank Hornung	Vacuum Technology and Integration Christian Day	Tritium Facilities and –processing Stefan Welte
Cryo-Structural Materials Klaus-Peter Weiss	New Applications of Superconductivity Sonja Schlachter	HTS-Fusion Magnets and Current Leads Walter Fietz	Tritium Extraction and Recovery Laetitia Frances	Tritium and Hydrogen Analytics Marco Röllig
Cryogenic Properties of Substances Steffen Grohmann	Modelling of Superconductors and Components Francesco Grilli	Rotating Machines Yingzhen Liu	Rarified Gas Dynamics Stylianos Varoutis	Physics of Hydrogen Isotopologues Robin Größle
Conductor and Wire Concepts Michael Wolf	Real-time System Integration Jörn Geisbüsch	Industry Applications Marion Kläser	Vacuum Hydraulics Thomas Giegerich	Search for New Physics Magnus Schlösser

Large Projects and Infrastructure KATRIN, Energy Lab 2.0 Tritium Laboratory Karlsruhe, High Field Laboratory, Cryo Experiments and Infrastructure, CryoMak Cryo-High Voltage Laboratory, CultKa, TOSKA, TIMO, SET-Laboratory, VACUUM Laboratory

Wind Generator

- Development and laboratory test of a 10 kW superconducting DC wind generator
- KIT Tasks: Design, built and test of the demonstrator

First-of-a-kind laboratory demonstrator for a superconducting DC wind generator

Y. Liu, M. Noe, M. Doppelbauer Feasibility Study of a Superconducting DC Direct-Drive Wind Generator IEEE Transactions on Applied Superconductivity, 26, 4, 1-6, 2016, DOI: 10.1109/TASC.2016.2536103

Wind Generator

Laboratory demonstrator

- Development and laboratory test of a 10 kW superconducting DC wind generator
- KIT Tasks: Design, built and test of the demonstrator

Demonstrator data

DFG funded Sino-German project since January 2018 to further develop basic technology for superconducting wind generators

Wind Generator

- Development and laboratory test of a 10 kW superconducting DC wind generator
- KIT Tasks: Design, built and test of the demonstrator

Demonstrator data

Name	Data
Torque	275 Nm
Rated speed	389 rpm
Air gap flux density	Mag. 0.75 T Avg. 0.52 T
Stator outer diameter	486 mm
Stack length	220 mm
Air gap	5 mm
Pole number	6
Target temperature	30 K
SC coils current	147 A
SC tapes	3.2 km

YBCO non inulation test coil

DFG funded Sino-German project since January 2018 to further develop basic technology for superconducting wind generators

Superconducting and Cryo-Materials	Energy Applications	Superconducting Magnet Technology	Fusion Fuel Cycle Technologies	Physics and Techniques of Hydrogen Isotopologues
Demnard Holzapier	Mathias Noe	vvaller Fielz	Christian Day	Deale Domschein
Superconducting Materials Jens Hänisch	Superconducting Power System Components Andrej Kudymow	Coil Technology Frank Hornung	Vacuum Technology and Integration Christian Day	Tritium Facilities and –processing Stefan Welte
Cryo-Structural Materials Klaus-Peter Weiss	New Applications of Superconductivity Sonja Schlachter	HTS-Fusion Magnets and Current Leads Walter Fietz	Tritium Extraction and Recovery Laetitia Frances	Tritium and Hydrogen Analytics Marco Röllig
Cryogenic Properties of Substances Steffen Grohmann	Modelling of Superconductors and Components Francesco Grilli	Rotating Machines Yingzhen Liu	Rarified Gas Dynamics Stylianos Varoutis	Physics of Hydrogen Isotopologues Robin Größle
Conductor and Wire Concepts Michael Wolf	Real-time System Integration Jörn Geisbüsch	Industry Applications Marion Kläser	Vacuum Hydraulics Thomas Giegerich	Search for New Physics Magnus Schlösser

Large Projects and Infrastructure KATRIN, Energy Lab 2.0 Tritium Laboratory Karlsruhe, High Field Laboratory, Cryo Experiments and Infrastructure, CryoMak Cryo-High Voltage Laboratory, CultKa, TOSKA, TIMO, SET-Laboratory, VACUUM Laboratory

Magnetic Heating

Industrial DC magnet heater ⇒ Forming of non-ferrous metals (Al, Cu, …)

Motivation

- Worldwide 1st / 2nd industrial HTS magnet heaters installed in Al pressing plant in 2008 / 2013
- +30 % energy efficiency
- +10% production throughput
- Performance/cost targets and maintenance not yet competitive

New project starts soon

- Application of second generation HTS tapes
- Proof of **economic viability**
- o Industrial-suited machines
- Qualification of DC magnet heaters for commercialisation

Mathiason 9e

Important Infrastructures

Cryogenic Material Test Karlsruhe

Conductor Manufacturing

Power Hardware in the Loop

Unique combination of infrastructure aligned to core competences

Many thanks for your attention!