

The quest for advanced reactor concepts

Massimiliano Fratoni | University of California, Berkeley

Paul Scherrer Institute

December 18, 2018

University of California, Berkeley

Berkeley has historic ties to nuclear science and technology

- UC Berkeley was founded on March 23rd 1868
- 1928 J. Oppenheimer becomes professor at UCB
- 1928 Ernest O. Lawrence starts at UCB then found Lawrence Berkeley and Lawrence Livermore National Laboratories
- 1930 Ernest O. Lawrence builds the first cyclotron in Berkeley
- Elements discovered by laboratory physicists: Neptunium, Plutonium, Cerium, Berkelium, Californium, Einsteinium, Fermium, Mendelvium, Nobelium, Lawrencium, Dubnium, and Seaborgium

The Nuclear Engineering Department at UC Berkeley

P. Hosemann Materials

E. Morse Fusion

J. Vujic Non-proliferation

R. Abergel Bio-Nuclear

P. Peterson

K. Vetter

Radiation det.

Thermo-hydr.

Nuclear physics

R. Slaybaugh Numerical meth.

H. Wainwright Nuclear waste

M. Fratoni Reactor design

K. van Bibber Nuclear physics

U.S. Operating Commercial Nuclear Power Reactors

Seed and blanket sodium cooled fast reactor

Reduced-moderation boiling water reactor (RBWR)

Fluoride-cooled hightemperature reactor (FHR)

Seed and blanket sodium cooled fast reactor

Reduced-moderation boiling water reactor (RBWR)

Fluoride-cooled hightemperature reactor (FHR)

Sodium-cooled fast reactor (SFR) burner cores are designed to be of a pancake shape

20% to 30% neutron leakage probability

Using a cigar-shape core it is possible to make efficient use of leaking neutrons

TRU burner SFRs operate on a closed fuel cycle

Advanced Burner Reactor (ABR) designed by ANL

- Continuous recycling
- Multi-batch fuel
- External feed of natural/depleted uranium
- Two-enrichment zones (TRU-to-HM ratio)
- Conversion ratio <1 (>0.6)

Breed & Burn are fast reactors that operate on a once-through fuel cycle

- Fresh fuel is depleted uranium only—no enrichment
- Bred Pu and MA are burned (fissioned) in situ—no reprocessing
- Examples: Feynberg (1958), Toshinsky (1997), Sekimoto (2000), TerraPower (2008)

Radiation damage and safety are main challenges for B&B reactors

Characteristic	Minimum required	Proven	
Peak burnup, FIMA	35%	15%	
HT-9 clad dpa	480-550	200	

■ Sodium void reactivity worth of large low-leakage B&B cores is large positive and core expansion negative reactivity feedback is small → safety concern

In the S&B cores leakage neutrons drive the subcritical blanket

- The seed functions similarly to an external neutron source
- No minimum burnup requirement (neutrons are always available from the seed)
- B&B possible with any blanket fuel (thorium, oxide fuel, LWR used fuel, etc.)

S&B SFRs feature similar power and diameter as S-PRISM, but higher Δp

- Reference design: GE Hitachi's S-PRISM 1,000 MWt
- Cladding: HT-9
- Seed fuel: U-TRU-10Zr
- Seed fuel can be either self-sustaining or TRU burner
- Makeup feed: TRU recovered from Light Water Reactor (LWR) UNF with 50 MWd/kg and 10-year cooling
- Active core height: 250 cm
- Pressure drop: ~0.9 MPa

Advanced Burner Reactor (ABR) core layout based on S-PRISM

The high transmutation S&B SFR features conversion ratio ~0 seed and a thorium blanket

Property	High transmutation S&B SFR	ABR
Fuel form	U-TRU-10Zr/Th	U-TRU-10Zr
Seed CR at BOEC	0.0	0.5
Number of seed assemblies	30	144
Number of blanket assemblies	96/145	n/a
Fuel residence time, # cycle (S/B)	2/5	6/6/7
Fuel cycle length, EFPD	1550	221
Burnup reactivity swing, %∆k/k	-3.60	-2.90
Average blanket power fraction, %	57.7	n/a
Average discharge burnup, MWd/kg	312.2/70.2	131.9
Peak radiation damage, dpa	185/207	200
TRU feed rate, kg/EFPY	158.1/none	173.8
Reprocessing capacity, kg/GWt-yr	494.5	2508.1
Sodium void worth, \$	6.56 ± 0.07	9.17
Doppler coefficient, ¢/°C	-0.07 ± 0.02	-0.08

A symbiosis exists between low CR seed and subcritical blanket

Seed and blanket sodium cooled fast reactor

Reduced-moderation boiling water reactor (RBWR)

Fluoride-cooled hightemperature reactor (FHR)

RBWR is expected to improve resource utilization and reduce waste using current LWR technology

- Use an epithermal neutron spectrum to establish multirecycling fuel cycles normally reserved for fast reactors
 - LWRs use ~0.6% of natural heavy metal resources; multirecycling would approach 100% utilization
 - Reduces high-level waste volume significantly per energy generated
- Compatible with the Advanced BWR (ABWR) pressure vessel and balance of plant
 - Should be easier to license, possibly reduce capital cost
- Design option for fuel sustainability (RBWR-AC) or LWR waste reduction (RBWR-TB2)

RBWR bundle

RBWR cores feature a tight hexagonal lattice

RBWR bundle with Y-shape control blades

ABWR bundle with cruciform control blades

The RBWR features an epithermal spectrum

Neutron spectrum of the RBWR-TB2 compared against other reactors

The RBWR features an epithermal spectrum

Fraction of fissions induced in each energy range for the RBWR-TB2

<lev< th=""><th>16.4%</th></lev<>	16.4%
1 eV - 1 MeV	37.6%
>0.1 MeV	46.0%

Spectrum of neutrons inducing fission

RBWRs use short fuel pins with a layered seed/blanket structure

ABWR vertical configuration

RBWR vertical configuration

Coolant void coefficient is a trade-off between leakage and spectrum hardening

RBWR vertical configuration

RBWR vertical configuration with DU seed

RBWR vertical configuration with Th seed

RBWR designs need to conform to several constraints, mostly related to safety

- All trans-fertile material must be recycled (1.2% of the heavy metals is lost in recycling and fabrication processes).
- The core should fit within an **ABWR pressure vessel**.
- Provide the full ABWR power in order to make use of most of the ABWR technology and engineering and to keep the design economical.
- Maintain criticality in the equilibrium cycle (approach to equilibrium has not been assessed).
- Possess negative coefficients of reactivity for fuel temperature, coolant void, and power.
- Have sufficient shutdown margin to shut down the core at any point in the cycle at cold, zero-power state.
- Remain compatible with the ABWR pumps (core pressure drop to ≤ 0.3 MPa, and core flow rate ≤ 120% of the ABWR flow rate).
- Avoid coolant dryout.
- Operate with a two-phase density wave oscillation decay ratio ≤ 0.7 to assure flow stability.

Optimal designs are the result of a complex trade-off

Variable	MCPR (↑)	Critical average burnup (↑)	Void reactivity coefficient (↓)	Shutdown margin (↑)	∆p (↓)
Coolant flow rate	1	\downarrow	\downarrow		1
Depletion time			1	\downarrow	
Seed length	1	\downarrow	1	\uparrow	1
Outer blanket lengths		\uparrow	\uparrow		\uparrow
Internal blanket length		\downarrow	\downarrow		
Makeup DU fraction			\uparrow	\uparrow	
Axial enrichment variation	*	*		1	1
Pitch to diameter ratio (P/D)	1	\downarrow	\downarrow	\uparrow	\downarrow
Number of pins per assembly	1		\downarrow	\uparrow	1
Power	\downarrow	\downarrow			Ť

* Any variation from uniform causes a decrease

Two RBWR variants were analyzed: (1) fuel self-sustained, and (2) transmuter

Th-blanket RBWR designs are unable to meet shutdown margin constraints

- It was found that even using the most conservative thermal-hydraulic correlations, it is not possible to design a self-sustaining fuel cycle without significant power down rate. In particular, it is not possible to design the core to have sufficient shutdown margin while also having negative void feedback.
- It was found that it is not possible to design a transmuter RBWR such that both the shutdown margin and the negative void feedback constraints are met.
- Shutdown margin and reactivity coefficient constraints maybe met using multiple seed layers.
- No significant differences were found in regards to back end of the fuel cycle properties when comparing uranium and thorium fed RBWRs.

Seed and blanket sodium cooled fast reactor

Reduced-moderation boiling water reactor (RBWR)

Fluoride-cooled hightemperature reactor (FHR)

Fluoride-cooled high-temperature reactors combine existing technologies

 Fuel: high-temperature coated-particle fuel developed for high-temperature gas-cooled reactors (HTGRs) with failure temperatures >1650°C

Coolant: high-temperature, low-pressure liquid-salt coolant (⁷Li₂BeF₄) with freezing point of 460°C and boiling point >1400°C (transparent)

Power Cycle: modified air Brayton power cycle with General Electric 7FB compressor

The reference design Mk1 PB-FHR is a pebble bed

- Annular pebble bed core with center graphite reflector
- Flibe coolant
- Core inlet/outlet temperatures 600°C/700°C
- Control elements in center reflector
- Reactor vessel 3.5 m outer diameter, 12.0 m high
- Power level: 236 MWth, 100 MWe (base load), 242 MWe (peak with natural gas)

Pebble design aims to address average density and peak fuel temperature constraints

Mk1 PB-FHR is the conceptual design developed at UC Berkeley

The Mk1 structures are designed for modular construction

Mk1 reactor building elevation view

Transient scenarios for the PB-FHR are modeled using two approaches

Serpent/OpenFOAM	COMSOL Multiphysics [®]
	. ,
Monte Carlo neutronics	Commercial tool
OpenFOAM C++ toolkit for thermal-hydraulics	Finite-element solver
	Fully coupled
Finite-volume solver	Elexible interface
Flexible (any material and	Computationally cheap
geometry	
Open source (almost)	
Computationally expensive	

COMSOL[®] Multi-group diffusion/SP₃ model

- 3-D geometry
- Multi-group neutron diffusion model (SP₃ extension)
- Cross-sections from Serpent full core model
- Porous media thermal-hydraulics model
- Convective heat transfer coefficient from Wakao correlation

Mk1 PB-FHR model in COMSOL

COMSOL[®] solver provides thermal-hydraulics and neutronics data

COMSOL[®] solver provides thermal-hydraulics and neutronics data

COMSOL[®] solver provides thermal-hydraulics and neutronics data

The Mk1 PB-FHR features large margins to accommodate a reactivity insertion accident

Conclusions

- Seed&Blanke SFR
 - Improve resource utilization
 - Might improve economics (n-th of a kind)
 - Require a well-established reprocessing infrastructure
- RBWR
 - Greatly increase resource utilization
 - Although it is based on BWR technology it greatly challenges its safety margins
- PB-FHR
 - Can use combined natural-gas/nuclear cycle to improve economics
 - Large safety margins
 - Requires 20% enriched uranium

Acknowledgements

This presentation was made possible by the hard work of:

Prof. Ehud Greenspan, Prof. Jasmina Vujić, Dr. Manuele Aufiero, Dr. Phil Gorman, Dr. Alejandra Jolodosky, Dr. George Zhang, Sandra Bogetic, Chris Keckler, Michael Martin, Dan Shen, Jun Shi, Xin Wang, Daniel Wooten.

Part of this research is being performed using funding received from the DOE Office of Nuclear Energy's Nuclear Energy University Programs.

Thank you! Questions?