The two-species Included Phase Model (IPM) has been utilized to simulate percolation of grain boundary fission gas bubbles on two-dimensional hexagonal grids representing (U,Pu)O2 fuel. Simulations were performed in which transport of vacancies and fission gas were coupled with minimization of internal, elastic and interfacial energies on networks of 15-300 grains with a computationally...
Inferring 3D features of heterogeneous materials (e.g., solid materials with gaseous porosity) from 2D sections is the subject of stereology. This inference process is critical for the determination of various and fundamental properties of the 3D medium, such as the pore size distribution and the percolation thresholds. Stereological approaches have been tailored to different...
Simulation of the effective properties of granular media such as thermal conductivity is of a great interest for many applications. Under accident conditions the nuclear fuel may crack and relocate inside its cladding. In this case, the relocation leads to a degraded conductivity of the fuel. Thermal conductivity evaluation is interesting to evaluate the temperature in the fuel rod.
We...
The combination of high burnups and low temperatures occurring in the rim of oxide fuels, or in plutonium-rich islands of heterogenous mixed-oxide fuels, leads to a re-crystallization of the as-fabricated microstructure. The resulting structure, known as high burnup structure (HBS), is featured by nanometric-size grains and may develop substantial porosity as burnup proceeds. These aspects...