Presentation materials
Peridynamics is a developing non-local modelling technique which has the ability to model crack initiation, propagation and branching. Unlike finite element analysis, the technique uses an integral formulation to determine the forces upon material points. This means that crack patterns can be predicted without any a priori knowledge of the loading or crack pattern. A peridynamic model for...
High temperature and temperature gradient in nuclear fuel causes internal stresses in the structure that result fuel deformation, such as swelling, creep and cracking. These phenomena have consequences to e.g. fuel's thermal conductivity and fission gas release, which are critical safety parameters. Currently the modelling of these phenomena mainly rely on empirical correlations. This means...
Several research activities at the LRS of the EPFL and at the PSI aim at developing advanced physics-based and high-fidelity methodologies, in order to improve the understanding of complex phenomena relevant to nuclear reactor safety. In this context, the two institutes are collaboratively developing a new multi-dimensional fuel behavior solver, OpenFOAM Fuel Behaviour Tool (OFFBEAT), based...
The thermo-physical properties of nuclear materials govern the operational and off-normal behavior of a nuclear reactor. It is, thus, necessary to be able to accurately measure and understand these material properties. Frequently, nuclear materials available for examination may be scarce and could come in non-ideal geometries (e.g. fuel fragments or curved cladding specimen). The asymmetry of...