Electronic noise in the time domain LTP seminar

W. Erdmann

2019-03-25

- Introduction / Motivation
- RC-filter with noise as a 'Stochastic Process'
 - equation of motion
 - Noise
 - Fokker-Planck equation
- application : pixel with threshold
 - time evolution, a comment on S-curves
 - rate of noise hits
 - time resolution

.

electronic noise

- all outputs / nodes of electronic exhibit fluctuations = noise
- fudamental and unavoidable, e.g.
 - Johnson-Nyquist noise in a resistor
 - shot-noise of currents
- when signals are "small", noise must be taken into consideration

textbook receipe for noise analysis

- introduce (fictituous) noise sources in addition to existing components
- analyze the circuit in the frequency domain
 - $\bullet\,$ determines the amplitude, v(f), of your output assuming that everything happens at a single fixed frequency, f
 - sum up all frequencies and noise sources incoherently

$$v^2 = \int v(f)^2 df$$

- repeated measurements of the output voltage:
 - \longrightarrow gaussian with width $\sqrt{v^2}$
- all we care about in practice, but actually in some cases not enough

・ロト ・四ト ・ヨト ・ヨト

Introduction

RC-Filter with noise application pixel with threshold

a typical pixel detector

- charge- (or current-) sensitive amplifier connected to sensor
 - fluctuates around "zero" ((continuous) reset)
 - particle through sensor creates signal excursion
- a comparator produces a logic signal when the amplitude crosses the threshold
- it then stays insensitive for some time !

- the time of the threshold crossing is important for us
 - LHC-like : 25 ns bunch-crossing clock: only hits registered during a particular (triggered) bunch crossing are read out
 - future detectors will make precise measurements of the arrival time
- electronic noise affects the amplitude of the charge we measure ...
- ... but it also affects the threshold-crossing time

Sadrozinsky et al, Rep. Prog. Phys. 81(2018) 026101

 $\sigma_t = \frac{\sigma_v}{\frac{dV}{dt}}$

- it is apparently obvious that from this figure one can conclude
 - $\frac{dV}{dt}$ output slope of the amplifier
 - σ_v voltage noise of the amplifier output
 - σ_t time resolution

Introduction

RC-Filter with noise application pixel with threshold

why is $\sigma_t = \sigma_v / (\frac{dV}{dt})$? (and why wasn't it obvious to me?)

• no noise:
$$V(t) = \frac{dV}{dt}t \Rightarrow t_c$$

Introduction

RC-Filter with noise application pixel with threshold

why is $\sigma_t = \sigma_v / (\frac{dV}{dt})$? (and why wasn't it obvious to me?)

• no noise:
$$V(t) = \frac{dV}{dt}t \Rightarrow t_c$$

• $V \rightarrow V + \delta v \Rightarrow t_c \rightarrow t_c - \delta V / (\frac{dV}{dt})$
noisy voltage σ_v superimposed $\rightarrow \sigma_t = \sigma_v / (\frac{dV}{dt})$

Introduction BC-Filter with noise

application pixel with threshold

why is $\sigma_t = \sigma_v / (\frac{dV}{dt})$? (and why wasn't it obvious to me?)

- no noise: $V(t) = \frac{dV}{dt}t \Rightarrow t_c$
- $V \rightarrow V + \delta v \Rightarrow t_c \rightarrow t_c \delta V / (\frac{dV}{dt})$ noisy voltage σ_v superimposed $\rightarrow \sigma_t = \sigma_v / (\frac{dV}{dt})$
- really true? Assumes 'static' noise from t = 0 to $\sim t_c$ A trajectory that reaches the threshold at t_1 may have crossed already before. In this case the later crossing will be ignored

How to take this into account?

- traditional noise analysis tells us the amplitude of noise fluctutations
- we need to know when the output crosses a threshold for the first time
- well know in the context of stocastic processes 'first-passage-time'

physisicists approach to stochastic processes

- think about and ensemble of systems, each with a random trajectory v(t)
- described by distribution

number of trajectories between v and v + dv at time t

- time evolution of P(v, t) according to equation of motion + noise
- the requirement of not having crossed the threshold before some time *t* becomes a bondary condition

$$P(v, t') = 0$$
 for $t' < t$, $v >$ threshold

• P(v,t) keeps track of all trajectories that haven't crossed before t

Example : RC-filter with noise

equation of motion

$$\dot{v}(t) = -\frac{1}{RC}v(t) + \frac{1}{RC}V_0(t) + \frac{1}{RC}v_n(t)$$

 $v_n(t)$ is the noise

- stochastic, every value is a random number not your regular function
- ensemble = all possible realizations of $v_n(t)$ and hence v(t)
- distribution P(v, t) describes ensemble

noise "function"

noise function

$$v_n(t) = a \cdot \xi(t)$$

• with following properties ($\langle \ldots \rangle$ = ensemble averages)

$$\begin{split} \langle \xi(t) \rangle &= 0 \\ \langle \xi(t_1) \xi(t_2) \rangle &= 2 \delta(t_1 - t_2) \end{split}$$

- noise values at different times are uncorrelated (white noise)
- the factor 2 is just one possible normalization
- note that $\langle v_n^2(t)\rangle=2a^2\delta(0)$ as such is not a meaningful number unfiltered noise voltages are not observables

< 🗇 🕨 < 🖻 > <

Connection with frequency domain noise

- this is nothing new, same as in the frequency domain
- unfiltered white noise is infinite when integrated over all frequencies
- in this case

$$v_n(f_1, f_2) \equiv \int_{f_1}^{f_2} a \cdot \hat{\xi}(f) df$$
$$\longrightarrow \langle v_n^2(f_1, f_2) \rangle = 4a^2 \cdot (f_2 - f_1)$$

• a in $v_n(t) = a\xi(t)$ is 2x the traditional 'noise per \sqrt{Hz} '

example : thermal resistor noise (Nyquist-Johnson)

$$v_n = \sqrt{4k_B T R \Delta f} \quad \Rightarrow \quad a = \sqrt{k_B T R}$$

Evolution of P(v, t)

 \Rightarrow

- the formalism below was developed for diffusion. To conform with existing literature, call voltages *x* from now on.
- equation of motion('Langevin equation') usually written as

$$\dot{x} = -A(x,t) + B(x,t) \cdot \xi(t)$$

• RC-filter (without external voltage $V_0(t)$ for now)

$$\dot{x}(t) = -\frac{1}{RC}x(t) + \frac{1}{RC}x_n(t)$$

•
$$A(x,t) = -\frac{1}{RC}$$

• $B(x,t) = B = a/RC$

伺 ト イ ヨ ト イ ヨ

Evolution of P(x,t)

- expand P(x,t) and x(t) in t to get $P(x,t+\Delta)$ from P(x,t) (Kramers-Moyal expansion)
- for P(x, t) with constant B

$$\frac{\partial}{\partial t}P(x,t) = \underbrace{-\frac{\partial}{\partial x}\left(A(x,t)P(x,t)\right)}_{\text{drift}} + \underbrace{B^2\frac{\partial^2}{\partial x^2}P(x,t)}_{\text{diffusion}}$$

'Fokker-Planck equation'

in this case

$$\frac{\partial}{\partial t}P(x,t) = \frac{\partial}{\partial x}\left(\frac{x}{RC}P(x,t)\right) + \frac{a^2}{(RC)^2}\frac{\partial^2}{\partial x^2}P(x,t)$$

Stationary solution

- leave the RC-filter alone for a long time with no boundary condition
- \longrightarrow becomes stationary: $\frac{\partial}{\partial t}P(x,t) = 0$, P(x,t) = P(x)

$$0 = \frac{\partial}{\partial x}(xP(x)) + \frac{a^2}{RC}\frac{\partial^2}{\partial x^2}P(x)$$

• the only equation I could solve analytically

$$P(x) = e^{-\frac{x^2}{2\sigma^2}}$$
 with $\sigma^2 = \frac{a^2}{RC}$

- finite (unlike v_n^2) with a gaussian distribution
- if the resistor is the only noise source $a = \sqrt{k_B T R}$

$$\sigma^2 = \frac{a^2}{RC} = \frac{k_B T R}{RC} = \frac{k_B T}{C}$$

'kTC'-noise

• in general, will replace a^2/RC by σ^2 now

Numerical studies

• Fokker-Planck equation with σ and $\tau = RC$:

$$\tau \frac{\partial}{\partial t} P(x,t) = \frac{\partial}{\partial x} (x P(x,t)) + \sigma^2 \frac{\partial^2}{\partial x^2} P(x,t)$$

 $\bullet\,$ or with normalized coordinates x/σ and t/τ

$$\frac{\partial}{\partial t}P(x,t) = \frac{\partial}{\partial x}(xP(x,t)) + \frac{\partial^2}{\partial x^2}P(x,t)$$

very convenient, covers all situations

- numerical solutions
 - starting from some P(x, t = 0), e.g. a gaussian
 - $P(x,t+\Delta t) = P(x,t) + \Delta t \times \left[\frac{\partial}{\partial x}(xP(x,t)) + \frac{\partial^2}{\partial x^2}P(x,t)\right]$
 - implement threshold at x_c by forcing $P(x \ge x_c, t) = 0$

example: threshold scans ("S-curve")

- one of our favorite calibration measurements
- inject a test signals of known, variable pulse-height
- count the fraction of pulses for which the comparator fires

- fit with an gaussian upper tail (aka error function) measures threshold x_c and noise (width)
- equivalent (illustration only): lower the threshold from ∞ to x_C

Time evolution with fixed threshold at 1 σ

- no threshold for t < 0: start with a gaussian centered at 0
- threshold turns on instantaneously at t = 0
- voltages above threshold fire the comparator, curves show 'survivors'

Introduction application pixel with threshold

Time evolution with fixed threshold at 1 σ

- no threshold for t < 0: start with a gaussian centered at 0
- threshold turns on instantaneously at t = 0
- voltages above threshold fire the comparator, curves show 'survivors'

Time evolution with fixed threshold at 1 σ

- for t > 0 noise/diffusion :
 - some systems close to threshold go above
 - the region just below threshold is depleted
- additional noise hits make thresholds look lower than they really are !
- size depends on effective time spent near threshold (later)

Time evolution with fixed threshold at 1 σ

 for long waiting times: total population continues to decrease (in the real pixel detector they would come back after some dead-time)

Survival probability vs time with fixed threshold at 1 σ

- instant drop from 1 to $1 \Phi(\text{threshold})$ (=S-curve expectation)
- quick diffusion from threshold region (=time dependent correction)
- exponential decay later \rightarrow log slope = noise hit rate

Survival probability with different thresholds $(0 \dots 8\sigma)$

asymptotically exponential decay behaviour

• time constant = probability for a pixel to fire due to noise during τ

Noise hit rate vs threshold

Timing resolution

- dropped external voltage V_0 some slides ago , re-introduce it now as x_0
- inject pulse x₀ into the RC-Filter
- equation of motion

$$\dot{x} = -\frac{1}{\tau}(x - x_0) + \frac{\sigma^2}{\tau}\xi(t)$$

Fokker-Planck becomes

$$\tau \frac{\partial}{\partial t} P(x,t) = \frac{\partial}{\partial x} ((x - x_0) P(x,t)) + \sigma^2 \frac{\partial^2}{\partial x^2} P(x,t)$$

or, in normalized coordinates

$$\frac{\partial}{\partial t}P(x,t) = \frac{\partial}{\partial x}((x-x_0)P(x,t)) + \frac{\partial^2}{\partial x^2}P(x,t)$$

A (10) A (10) A (10)

RC-filter with signal injection, no threshold

- starting from the stationary gaussian
- follows the expected

$$1 - e^{-t/\tau}$$

• use amplitude x_0 to select slope dV/dt

same signal with a threshold at 5 σ

threshold = 5.0σ , amplitude = 10.0σ

• small effects on average crossing time and resolution

a more realistic situation

threshold = 10.0 σ , amplitude = 50.0 σ

- almost no effect for realistic conditions
- e.g. $\sigma = 50 e$, Signal = 2500 e, threshold = 500 e

back to S-curves

- in contrast to the timing measurement, the peak amplitude can be close to the threshold
 - \Rightarrow spend significant time where noise evolution can have an effect
- the usual S-curve interpretation is for a measurement with no duration
- obviously an RC-filter does not have the peaking behaviour of a preamp emulate it by pulling the injected charge back out again after $1\times\tau$

• more realistic analysis (probably) possible but more complicated

Introduction application pixel with threshold

threshold = 10σ , pulse height = $6 \dots 12\sigma$

Electronic noise in the time domain

total number of hits vs amplitude

- apparent threshold lower than 10, as expected (real signals probably do more or less the same)
- width seems to be underestimated, too
- however, this is only a crude approximation

summary and conclusions

- methodology of stochastic processes can describe electronic noise
- straightforward to obtain results numerically for an RC filter
- reproduces $\exp(-0.5(\text{threshold/noise})^2)$ law for noise hit rates
- negligible impact on time-resolution
 - frozen-noise approach appropriate if output runs through noise in $\Delta t \ll \tau$
 - this is of course the case in realistic situations
 - so the conclusion $\sigma_t = \sigma_v / \frac{dV}{dt}$ is correct,

... just the picture is wrong

 S-curves are potentially sensitive to non-trivial effects quantitative study requires a more realistic model than just RC