

M. Hildebrandt :: Paul Scherrer Institut on behalf of the CDCH team of the MEG II Collaboration

The ultra-light Drift Chamber of the MEG II Experiment

LTP Seminar, PSI, March 25, 2019

VCI - Vienna Conference on Instrumentation

- «traditional» conference on instrumentation
- every 3 years, alternating with
 «Pisa Meeting on Advanced Detectors, La Biodola, Isola d'Elba (I)» and
 «Instrumentation for Colliding Beam Physics INSTR, Novosibirsk (RUS)»
- 1978 1998: Wire Chamber Conference WCC in Vienna
- since 2001: Vienna Conference on Instrumentation VCI

SiPM – still increasing Interest

NIM-A Special Issue on SiPMs

AUTHOR	TITLE	DOI
R. Klanner, F. Sauli	Editorial	https://doi.org/10.1016/j.nima.2018.11.040
A. Gola, C. Piemonte	Overview on the main parameters and technology of modern SiPMs	https://doi.org/10.1016/j.nima.2018.11.119
F. Acerbi, S. Gundaker	Understanding and simulating SiPMs	https://doi.org/10.1016/j.nima.2018.11.118
R. Klanner	Characterisation of SiPMs	https://doi.org/10.1016/j.nima.2018.11.083
P. P. Calo, F. Ciciriello, C. Marzocca, S. Petrignani	SiPM Readout Electronics	https://doi.org/10.1016/j.nima.2018.09.030
E. Garutti, Yu. Musienko	Radiation damage of SiPMs	https://doi.org/10.1016/j.nima.2018.10.191
F. Simon	SiPMs in Particle and Nuclear Physics	https://doi.org/10.1016/j.nima.2018.11.042
G. Llosa	SiPM-based Compton cameras	https://doi.org/10.1016/j.nima.2018.09.053
M. Grodzicka-Kobylka, M. Moszynski, T. Szczęśniak	SiPMs in gamma spectroscopy with scintillators	https://doi.org/10.1016/j.nima.2018.10.065
M. G. Bisogni, A. Del Guerra, N. Belcari,	Medical applications of SiPMs	https://doi.org/10.1016/j.nima.2018.10.175
M. Caccia, L. Nardo, R Santoro, D. Schaffhauser	SiPMs and SPAD imagers in bio- photonics: Advances and perspectives	https://doi.org/10.1016/j.nima.2018.10.204

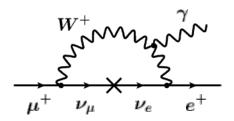
Analysis methods for highly radiation-damaged SiPMs

S. Cerioli, E. Garutti, R. Klanner, D. Lomidze, S. Martens, J. Schwandt, M. Zvolsky

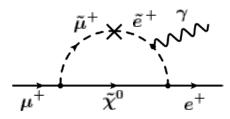
Hamburg University

VCI-2019 --- Robert Klanner --- 18 - 22.2.2019

M. Hildebrandt :: Paul Scherrer Institut
on behalf of the CDCH team of the MEG II Collaboration


The ultra-light Drift Chamber of the MEG II Experiment

LTP Seminar, PSI, March 25, 2019


charged Lepton Flavour Violation

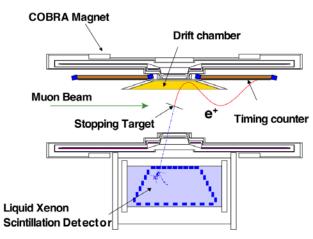
- MEG experiment at the Paul Scherrer Institut (Villigen, CH) is searching for the charged lepton flavour violating (cLFV) decay $\mu^+ \to e^+ \gamma$
- Standard Model (SM): forbidden decay
- Standard Model with v masses and oscillations: strongly supressed due to small v masses

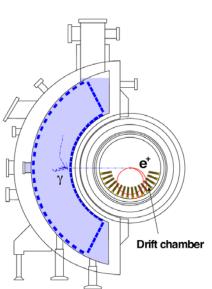
BR
$$(\mu^+ \rightarrow e^+ \gamma) \approx 10^{-54}$$

Beyond Standard Model (BSM) theories: enhanced probability due to mixing of new particles

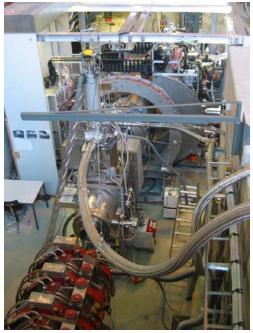
BR (
$$\mu^+
ightarrow e^+ \gamma$$
) >> 10⁻⁵⁴ (10⁻¹¹ - 10⁻¹⁴)

 \rightarrow experimental observation of $\mu^+ \rightarrow e^+ \gamma$ is clear signature of "New Physics" beyond the SM




MEG Experiment

- located at the Paul Scherrer Institut (PSI)
 - p-cyclotron: 590 MeV, 2.4 mA (→1.4 MW)
 - ⁻ πE5: most intense DC low momentum (28 MeV/c) muon beam in the world, intensity $O(10^8 \mu/s)$
- dedicated detector to measure the observables characterising the $\mu^+ \rightarrow e^+ \gamma$ event (E_{\gamma}, E_e, t_{e\gamma}, $\psi_{e\gamma}$, $\phi_{e\gamma}$)
- 2016: analysis of full data sample 2009-2013


BR
$$(\mu^+ \rightarrow e^+ \gamma)$$
 < 4.2 · 10⁻¹³ (90% CL)

→ factor ~30 improvement compared to MEGA experiment (1999)

Baldini *et al.*, Eur. Phys. J. C (2013) 73:2365 Baldini *et al.*, Eur. Phys. J. C (2016) 76:434

How to increase the Experiment's Sensitivity

increase the sensitivity for the signal (SES – single event sensitivity)

SES =
$$\frac{1}{R \cdot T \cdot A_g \cdot \epsilon(e^+) \cdot \epsilon(\gamma) \cdot \epsilon(TRG) \cdot \epsilon(sel)}$$

$$\frac{1}{R \cdot T \cdot A_g \cdot \epsilon(e^+) \cdot \epsilon(\gamma) \cdot \epsilon(TRG) \cdot \epsilon(sel)}$$

$$\frac{1}{R \cdot T \cdot A_g \cdot \epsilon(e^+) \cdot \epsilon(\gamma) \cdot \epsilon(TRG) \cdot \epsilon(sel)}$$

$$\frac{1}{R \cdot T \cdot A_g \cdot \epsilon(e^+) \cdot \epsilon(\gamma) \cdot \epsilon(TRG) \cdot \epsilon(sel)}$$

$$\frac{1}{R \cdot T \cdot A_g \cdot \epsilon(e^+) \cdot \epsilon(\gamma) \cdot \epsilon(TRG) \cdot \epsilon(sel)}$$

$$\frac{1}{R \cdot T \cdot A_g \cdot \epsilon(e^+) \cdot \epsilon(\gamma) \cdot \epsilon(TRG) \cdot \epsilon(sel)}$$

$$\frac{1}{R \cdot T \cdot A_g \cdot \epsilon(e^+) \cdot \epsilon(\gamma) \cdot \epsilon(TRG) \cdot \epsilon(sel)}$$

reduce the background

$$B_{acc} \sim R \cdot \Delta E_{e} \cdot (\Delta E_{\gamma})^{2} \cdot \Delta T_{e\gamma} \cdot (\Delta \Theta_{e\gamma})^{2}$$

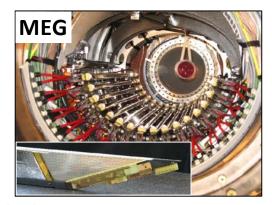
$$e^{*}_{resolution} \sim \frac{1}{r_{essolution}} e^{*}_{resolution} \sim \frac{1}{r_{essolution}} e^{*}_{resolution} e^{*}_{resolution} = \frac{1}{r_{essolution}} e^{*}_{resolution} e^{*}_{resolution} = \frac{1}{r_{essolution}} e^{*}_$$

- MEG → MEG II: □ increased beam rate (2x)
 - improved resolutions of sub-detectors (2x)
 - $^{\circ}$ aiming for a sensitivity of $^{\sim}6 \cdot 10^{-14}$

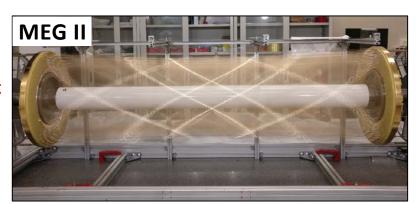
How to increase the Experiment's Sensitivity

increase the sensitivity for the signal (SES – single event sensitivity)

SES =
$$\frac{1}{R \cdot T \cdot A_g \cdot \epsilon(e^+) \cdot \epsilon(\gamma) \cdot \epsilon(TRG) \cdot \epsilon(sel)}$$

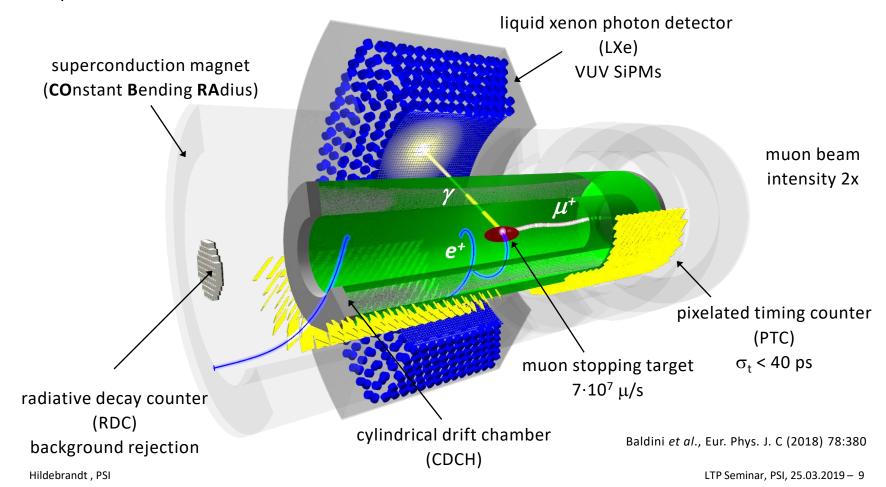

$$\frac{1}{R \cdot T \cdot A_g \cdot \epsilon(e^+) \cdot \epsilon(\gamma) \cdot \epsilon(TRG) \cdot \epsilon(sel)}$$

$$\frac{1}{R \cdot T \cdot A_g \cdot \epsilon(e^+) \cdot \epsilon(\gamma) \cdot \epsilon(TRG) \cdot \epsilon(sel)}$$

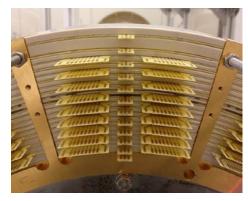

$$\frac{1}{R \cdot T \cdot A_g \cdot \epsilon(e^+) \cdot \epsilon(\gamma) \cdot \epsilon(TRG) \cdot \epsilon(sel)}$$

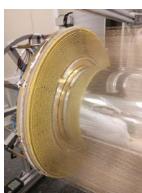
$$\frac{1}{R \cdot T \cdot A_g \cdot \epsilon(e^+) \cdot \epsilon(\gamma) \cdot \epsilon(TRG) \cdot \epsilon(sel)}$$

reduce the background



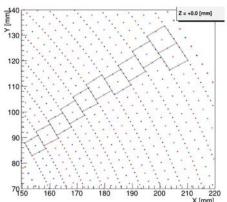
factor 2 improvement


- improved resolutions for all sub-detectors (2x)
- increased beam rate
- new electronics : ~9000 channels at 5GSps (DRS4 based)
- updated and new calibration methods



Cylindrical Drift Chamber - 1

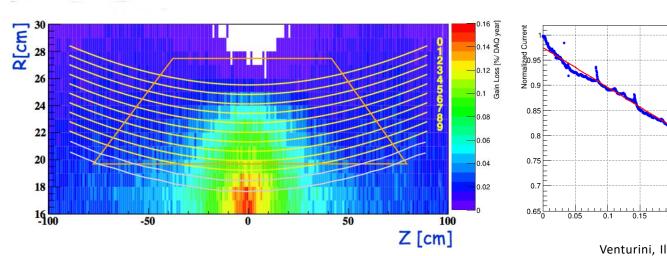
- designed to measure 52.8 MeV/c e⁺
 - single volume detector
 - high transparency
 - □ low multiple scattering contribution $1.58 \cdot 10^{-3} \text{ X}_{0}$ along e⁺ track
- mechanics
 - length = 200 cm, $\varnothing_{\text{outer}}$ = 60 cm
 - sensitive region 29 cm < r_{sensitive} < 17 cm corresponding to the bending radius of 52.8 MeV/c e⁺ in the magnet
 - carbon fiber support structure (1.76 mm thick)
 consisting of two half-shells
 - endplates with stacked pcbs and PEEK spacers
 - aluminized Mylar foil to separate sensitive volume with wires and inner part with μ-beam and stopping target



Cylindrical Drift Chamber - 2

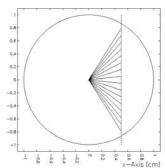
wiring

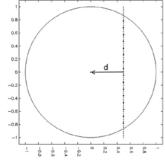
- stereo angle geometry (6.0° to 8.5°)
 → hyperboloid volume
- 10 concentric drift cell layers (original design) realised: 9 layers
- 2 guard wire layers
- (approximately) squared drift cell size
 ± z_{max}: 6.7 mm (inner) 8.7 mm (outer)
 z = 0: 5.8 mm (inner) 7.5 mm (outer)
- $^{\circ}$ 20 μm gold-plated W wires 40 μm, 50 μm silver-plated Al wires (→ 1728 + 9408 + 768 = 11902 wires with 272 kg)
- readout/hit reconstruction principle:
 - stereo angle geometry
 - cluster counting and timing technique
 - double readout for charge division and signal time propagation difference (DRS4)

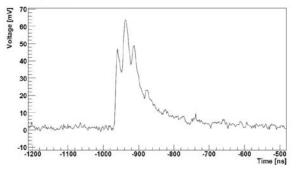


Counting Gas – Ageing

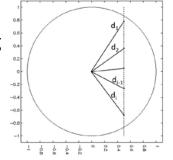
- He-iC₄H₁₀ gas mixture, mixing ratio 90:10
 - helium-based gas mixture due to need of long radiation length
 small contribution to multiple scattering important for low momentum measurement
 - isobutane added as quencher to increase HV stability
- ageing tests (performed with He-iC₄H₁₀, 85:15)
 - laboratory tests with x-ray source, acceleration factor 20x
 - " «hottest» spot: central region of innermost anode wire
 ~30 kHz e⁺/cm → 0.5 C/cm in 3 years (@ 2·10⁵ gas gain) → ~15% gain loss/year
 - in general: < 10% gain loss/year

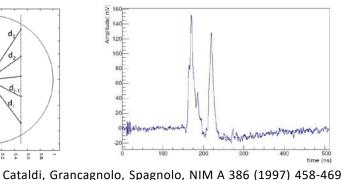



Venturini, Il Nuovo Cimento 38 C (2015) 22



Counting Gas – Cluster Counting Technique


- primary ionisation
 - $^{\circ}$ ~13 e⁻/cm (n_p dominated by W_{He} = 41 eV)
 - $^{ ext{-}}$ large spacing between the individual clusters ightarrow cluster counting and timing technique
 - «traditional»



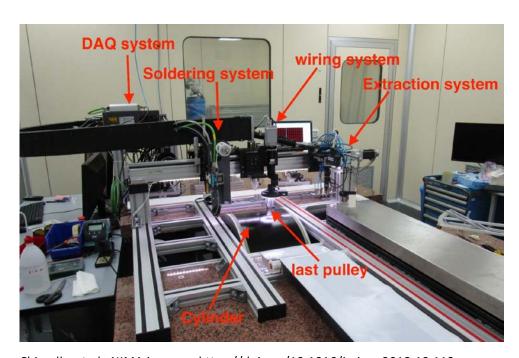
- cluster counting timing technique
 - → increased number of supporting points along particle trajectory
 - → improved track fitting accuracy and momentum determination

• performance (resolution, σ):

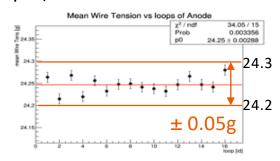
single hit (prototype) \sim 110 μ m in r-direction

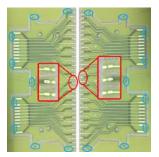
momentum (MC) ~110 keV/c (@52.8 MeV/c)

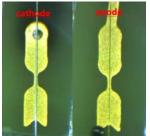
angular (MC) \sim 5.7 mrad in θ , \sim 6.0 mrad in ϕ


Signorelli, D'Onofrio, Venturini, NIM A 824 (2016) 581-583 Baldini *et al.*, 2016 JINST 11 P07011

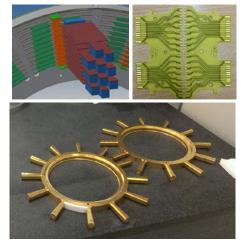
Tassielli, Grancagnolo, Spagnolo, NIM A 572 (2007) 198-200



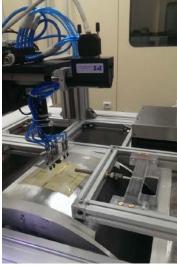

Wiring Technique

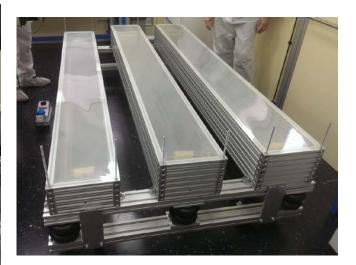

- semi-automatic wiring robot
 - to string continuously variable wire pitch and stereo angle configurations
 - to apply a pre-defined mechanical tension to the wires, constant and uniform (± 0.05g)
 - to monitor the wire locations and their alignment (~20 μm)
 - to monitor the soldering quality on the pcb

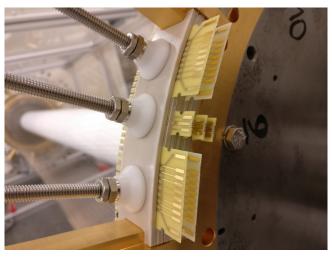
Chiarello et al., NIMA in press, https://doi.org/10.1016/j.nima.2018.10.112

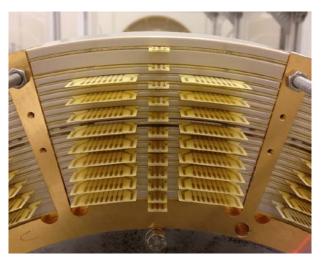


LTP Seminar, PSI, 25.03.2019 - 14

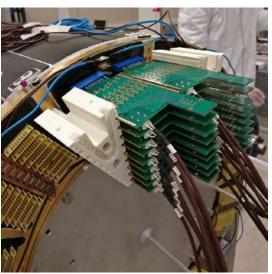

Construction Work - 1

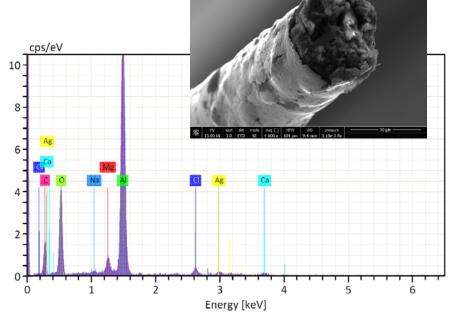



Hildebrandt , PSI


LTP Seminar, PSI, 25.03.2019 – 15

Construction Work - 2

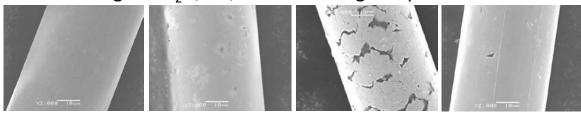



Hildebrandt , PSI

LTP Seminar, PSI, 25.03.2019 - 16

Humidity and Corrosion of Al Wires - 1

- observation: during assembly in 2016 and 2017 several silver-plated Al wires broke
 - even the elongation $\Delta L/L$ was only at 50% of the elastic limit
 - the wires passed a preceding stretching test during QA procedure (stretching up to 75% of elastic limit)
- intensive examinations of the breaking point with SEM and EDS
 - traces of Na and Cl
- laboratory test:
 - " «untouched» wires were immersed or sprayed with water and 3% water solution of NaCl
 - → in all cases wire breaking could be induced and breaking point looked identical to broken wires in drift chamber


 «fear»: mechanical stress could enhance the corrosion, known as Stress Corrosion Cracking (status 2019: this seems not(!) to be the case)

Hildebrandt, PSI

Humidity and Corrosion of Al Wires - 2

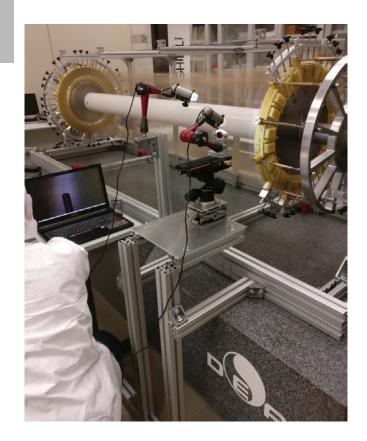
- conclusion: silver-plated Al wire (Al alloy 5056, Ag layer for soldering purposes), is very sensitive to corrosion induced by humidity, in particular in the presence of NaCl
- → lessons learned: avoid humidity → additional dehumidifier installed in clean room
 - □ avoid Na and Cl ⇔ close to Mediterranean Sea
 - observations are sign of H₂O, Na, Cl and "Al + Ag composition with cracks"

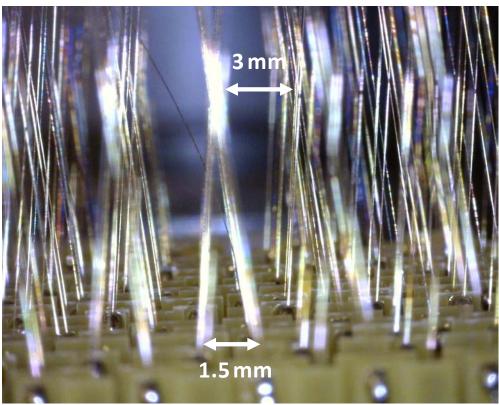
- due to unique, but potentially bad condition in clean room caused by power cut: construction and assembly restarted from scratch in August 2016 under condition of rel. humidity <55%, since August 2017 (rel. humidity <50%) no further wire breaking occurred...
- ...but unfortunately end of 2018 during pre-commissioning run: signature/combination of short-circuited segments indicate broken wire

→ drift chamber was re-opened and inspected: 2 broken silver-plated Al wires

Removal of broken Wire - 1

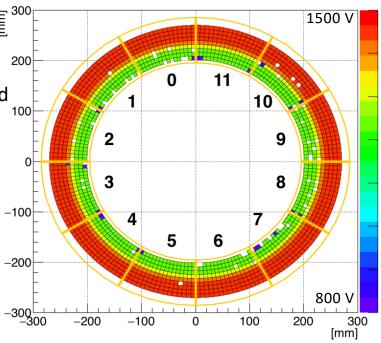
- proven strategy to remove broken wire
 - 1 mm stainless steal rod with 1.5 mm hook
 - support with 5(+1) independent axes with micrometric manual control

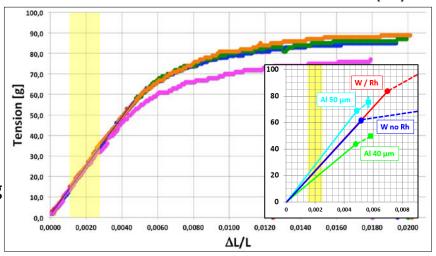




Removal of broken Wire - 2

remark: 14 broken wires successfully removed with this procedure in August 2017

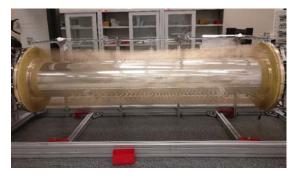

HV Stability and Mechanical Wire Tension


- observation during HV conditioning in 2018
 - a few drift cells showed oscillating currents
 - in some cases even a permanent short occurred
 - outer layers: more stable than inner layers
 - higher voltages can be reached

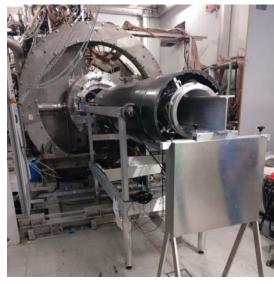
(outer layers: larger drift cells = larger wire distances)

→ wire tension needs to be increased!

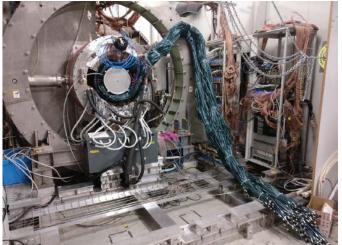
remark: why have we been so «conservative» concerning the wire tension, i.e. 50% of elastic limit?

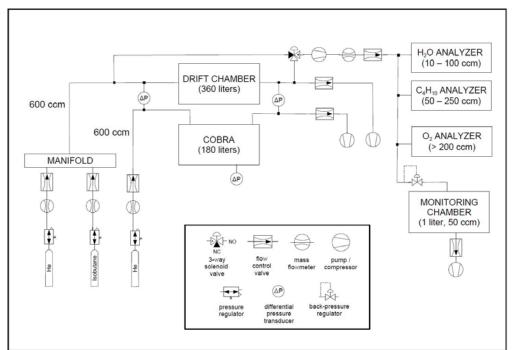

Stretching of Drift Chamber

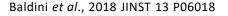
- proven strategy to re-open and to lengthen the drift chamber
 - dedicated support structure with turnbuckles (used for construction)
 - during stretching procedure additional monitoring with optical or tactile measurements of distance and parallelism of end plates


remark: parallelism on the level of <50 μm
 (reminder geometry: length 2 m, diameter 60 cm, applied force 280 kg)

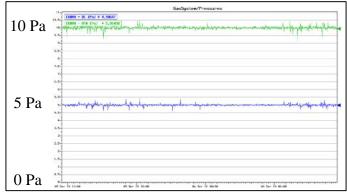
Installation

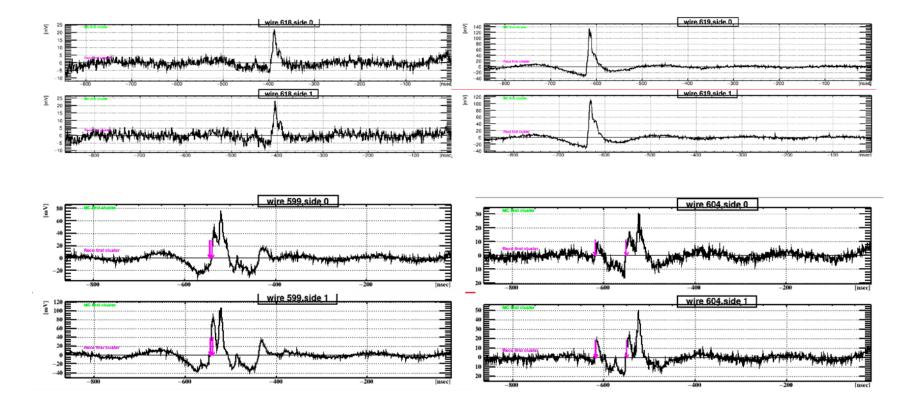

October 2018: installation, survey, cabling, etc.



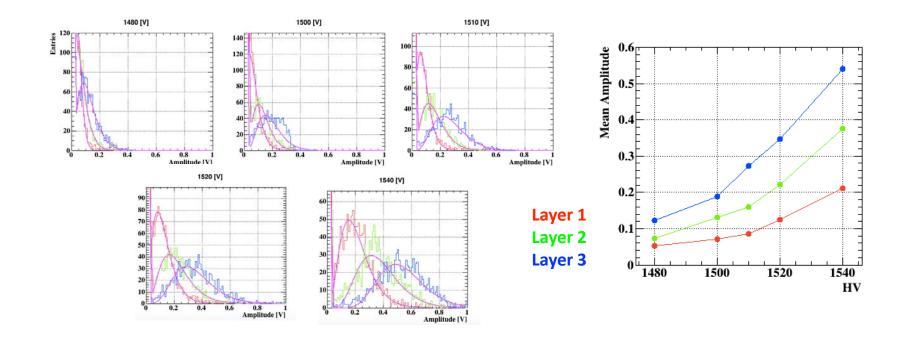

Hildebrandt , PSI LTP Seminar, PSI, 25.03.2019 – 23

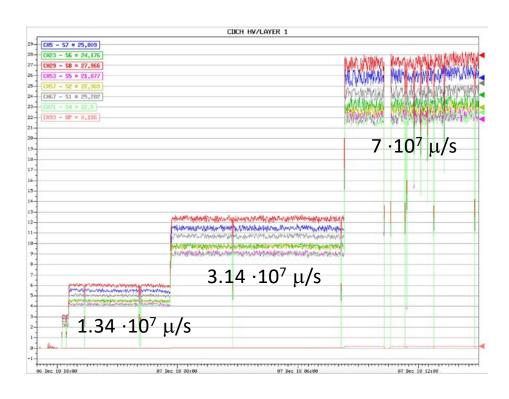
Pressure Regulation & Gas Monitoring System

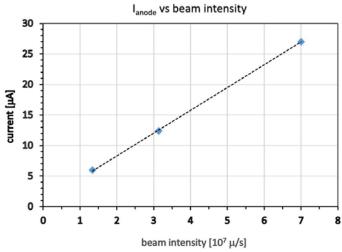

- gas supply & distribution, pressure control and gas monitoring
- ensures purity to avoid aging and stability of gas mixture for stable electron drift properties
 - (3% change of iC_4H_{10} concentration leads to 1% effects on v_d and 5% on gain)
- pressure stability on sub-Pa level achieved during operation
- gas analysis: commercial devices for H₂O, O₂ and iC₄H₁₀ (ppm-level)
- monitoring: gain measurement in thin-wall drift tubes using ⁵⁵Fe

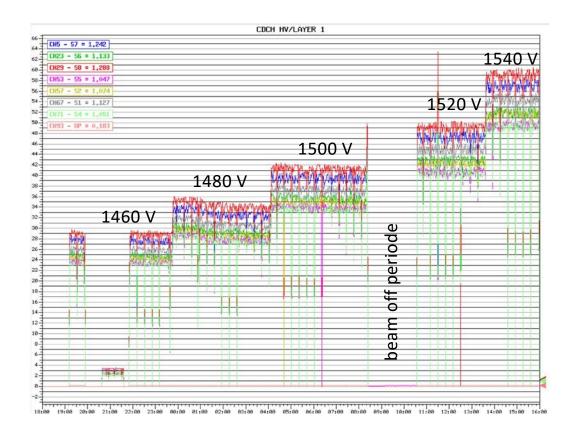


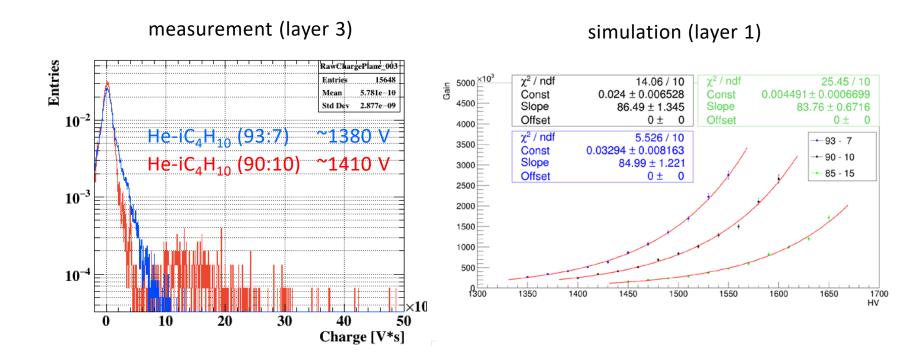
- December 2018: cosmics and Michel e⁺ events at muon beam intensities of up to $10^8 \,\mu/s$
 - waveforms


remark: 1.2 GSPS, but transmission limited to 400 MHz bandwidth, consequently: individual clusters hardly resolvable...


- December 2018: cosmics and Michel e^+ events at muon beam intensities of up to $10^8~\mu/s$
 - amplitude distributions vs HV


gain vs HV (arbitrary units)


- December 2018: cosmics and Michel e⁺ events at muon beam intensities of up to $10^8 \,\mu/s$
 - scan with fixed HV at different beam intensities



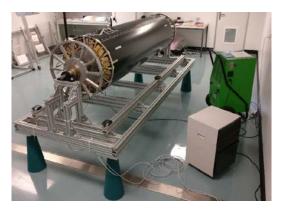
- December 2018: cosmics and Michel e^+ events at muon beam intensities of up to $10^8~\mu/s$
 - HV scan at full beam intensity

- December 2018: cosmics and Michel e⁺ events at muon beam intensities of up to $10^8 \,\mu/s$
 - □ comparison of He-iC₄H₁₀ in mixing ratios 90:10 and 93:7 and HV values for equivalent gas gain

Shutdown 2019 — Experimental Hall

extraction from COBRA

LEVI-Transport to PSI east side



Shutdown 2019 – Clean Room

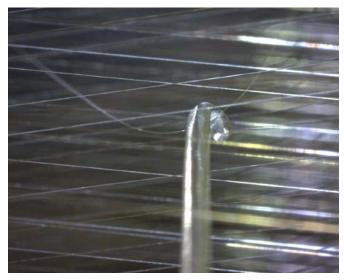
preparation of clean room

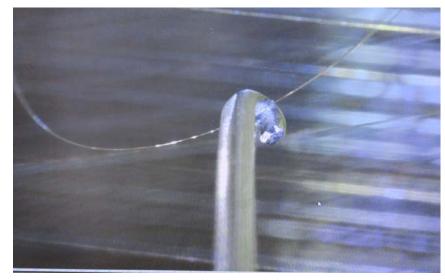
survey of drift chamber before opening

 \rightarrow length: 1992.855 mm \leftrightarrow 1992.840 mm (summer 2018, Pisa)

parallelism: $0.006^{\circ} \rightarrow \Delta \approx 30 \,\mu\text{m}$ at outer endplate, compatible with measurement in Pisa

Shutdown 2019 – Removal of 2 broken Wires


Hildebrandt , PSI


LTP Seminar, PSI, 25.03.2019 - 32

Shutdown 2019 – Removal of 2 broken Wires

Status and next Steps

- both broken wires: 40 μm silver-plated Al cathode wires
- breaking points of wires give hint to «Al corrosion» as observed in 2016
 - and 2017 flat wire ends
 - crystalline structuresclose to breaking points
 - → needs to be confirmed by metallurgy analysis

- since 10 days: drift chamber temporarily closed, sealed and flushed with N₂ to avoid any humidity
 - stretched by +500 μm compared to Run 2018 (final goal: 1000 1500 μm)
- next steps: stretch to reach good electrostatic stability at working point
 - overstretch for certain time period to find (potentially) «weak» wires
 - → both activities will be monitored online with laser tracker surveys
 - full HV test, closing, sealing, insertion in COBRA and successful Run 2019!

Hildebrandt, PSI

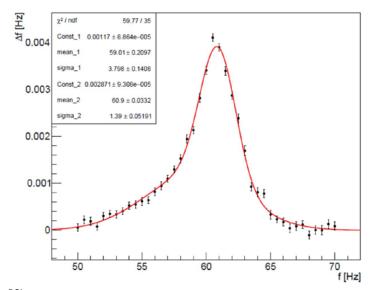
- MEG II experiment
 - seeks for the cLFV decay $\mu^+ \rightarrow e^+ \gamma$
 - aims for a sensitivity of 10⁻¹⁴
- new cylindrical Drift Chamber (CDCH)
 - low-mass construction (1.58·10⁻³ X_0)
 - improved resolutions (2x) compared to previous drift chamber system
- construction phase finished summer 2018, although facing some wire breakings and severe issue of Al corrosion
- first commissioning December 2018
 - basic operation principles proven
 - HV instabilities limited operation
- annual PSI accelerator shutdown
 - broken wires have been removed
 - chamber length will be increased
- → confidence that the Drift Chamber will fulfil the experiment's requirements

Teams and Support

collaborative effort:

- Universities/INFNs in Pisa, Lecce and Rome (I)
- Paul Scherrer Institut, Villigen (CH)
- JINR, Dubna (RUS)
- Marco Chiappini
- Gianluigi Chiarello
- Marco Francesconi
- Alessandro Baldini
- Luca Galli
- Marco Grassi
- Marco Panareo
- Francesco Renga
- Cecilia Voena
- Dieter Fahrni
- Andreas Hofer
- M.H.

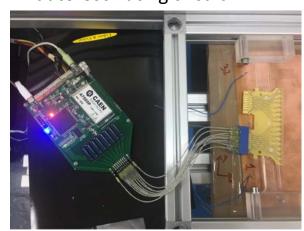
- Gabriela Balestri
- Alessandro Bianucci
- Giulio Petragnani
- Fabrizio Raffaelli
- Fabrizio Cei
- Franco Grancagnolo
- Donato Nicolo
- Angela Papa
- Francesco Tassieli
- Alexander Kolenikov
- Vladimir Malyshev


Measurement of Wire Tension

based on measurement of resonance frequency

$$f = \frac{1}{2L} \sqrt{\frac{T}{\rho}} \qquad \text{where} \qquad f \text{ fundamental resonance frequency} \\ T \text{ wire tension} \\ L \text{ wire length} \\ \rho \text{ linear mass density}$$

capacitive coupling of two adjacent wires: $C_{ww} = \frac{\pi \varepsilon}{ln \frac{2D}{d}}$


$$|\partial f| = \frac{C_{ww}}{2\pi C\sqrt{LC}} \cdot \frac{2/3}{\ln(2D/d)} \cdot \frac{dD}{D}$$

where *d* wire diameter

D wire distance

L, C inductance, capacitance of auto-oscillating circuit

