

LTP seminar

Higher order corrections for muons

Yannick Ulrich

Paul Scherrer Institut / Universität Zürich

 $20^{\mbox{\tiny TH}}$ May 2019

Yannick Ulrich, 20.05.19 - p.1/14

higher order corrections...

- MEG, Mu3e, MUonE, MUSE etc. need to understand relevant (background) SM processes very precisely
- naive estimate: for each order, $\alpha \sim 1/137$.

- MEG, Mu3e, MUonE, MUSE etc. need to understand relevant (background) SM processes very precisely
- naive estimate: for each order, $\alpha \sim 1/137$.
- more realistic estimate: for each order, $lpha \log^i rac{m_e^2}{m_u^2} \sim 1/12$

- MEG, Mu3e, MUonE, MUSE etc. need to understand relevant (background) SM processes very precisely
- naive estimate: for each order, $\alpha \sim 1/137$.
- more realistic estimate: for each order, $\alpha \log^i rac{m_e^2}{m^2} \sim 1/12$
- \Rightarrow minimal requirement:
 - NLO for $\mu \rightarrow e \nu \bar{\nu} \gamma$, $\mu \rightarrow e \nu \bar{\nu} e e$ (PiBeta, MEG, Mu3e)
 - NNLO for $\mu \rightarrow e \nu \bar{\nu}$ (TWIST, MEG_J)
 - at the very least NNLO for $\mu e \rightarrow \mu e$ and $\mu p \rightarrow \mu p$ (MUonE, MUSE)

$\mu \to e\nu\bar{\nu} + \gamma$ and $\mu \to e\nu\bar{\nu} + e^+e^-$

[Pruna, Signer, YU 16, Pruna, Signer, YU 17, YU 17]

• Our prediction $\mathcal{B}_{PSU} = (4.26 - 0.04_{NLO}) \cdot 10^{-3}$ agrees perfectly with [Fael, Mercolli, Passera 2015]

- Our prediction $\mathcal{B}_{PSU} = (4.26 0.04_{NLO}) \cdot 10^{-3}$ agrees perfectly with [Fael, Mercolli, Passera 2015]
- 2006: $\mathcal{B}_{2006}^{\pi\beta} = 4.40(9) \cdot 10^{-3} \text{ (cf. } \mathcal{B}_{\text{theo}}^{\pi\beta} = 4.3 \cdot 10^{-3} \text{)}$

- Our prediction $\mathcal{B}_{PSU} = (4.26 0.04_{NLO}) \cdot 10^{-3}$ agrees perfectly with [Fael, Mercolli, Passera 2015]
- 2006: $\mathcal{B}_{2006}^{\pi\beta} = 4.40(9) \cdot 10^{-3}$ (cf. $\mathcal{B}_{\mathsf{theo}}^{\pi\beta} = 4.3 \cdot 10^{-3}$)
- 2012: $\mathcal{B}_{2012}^{\pi\beta} = 4.37(4) \cdot 10^{-3}$ (cf. $\mathcal{B}_{\text{theo}}^{\pi\beta} = 4.34 \cdot 10^{-3}$)

- Our prediction $\mathcal{B}_{PSU} = (4.26 0.04_{NLO}) \cdot 10^{-3}$ agrees perfectly with [Fael, Mercolli, Passera 2015]
- 2006: $\mathcal{B}_{2006}^{\pi\beta} = 4.40(9) \cdot 10^{-3}$ (cf. $\mathcal{B}_{\mathsf{theo}}^{\pi\beta} = 4.3 \cdot 10^{-3}$)
- 2012: $\mathcal{B}_{2012}^{\pi\beta} = 4.37(4) \cdot 10^{-3}$ (cf. $\mathcal{B}_{\text{theo}}^{\pi\beta} = 4.34 \cdot 10^{-3}$)
- assuming $m_e = 0$: $\mathcal{B}_{\mathsf{PSU}}^{m_e=0} = (4.35_{\mathrm{LO}} + 0.06_{\mathrm{NLO}}) \cdot 10^{-3}$
- $3.7\sigma \rightarrow ~\sim 1\sigma$
- ⇒ details matter!!

Relate all data using NLO Monte Carlo to $E_{\gamma} > 10 \,\mathrm{MeV}$

• Compute kinematic acceptance ϵ

$$\mathcal{B}(10 \,\mathrm{MeV}) = \underbrace{\frac{\mathcal{B}_{\mathsf{PSU}}(10 \,\mathrm{MeV})}{\mathcal{B}_{\mathsf{PSU}}(\mathsf{exp. cuts})}}_{\epsilon} \mathcal{B}_{\mathsf{exp}}(\mathsf{exp. cuts})$$

• $\epsilon_{\mathsf{MEG}} \approx 2 \cdot 10^5$, $\epsilon_{\pi\beta} \approx 3$

• combined experimental $\bar{\mathcal{B}}(10 \,\mathrm{MeV}) = 1.27(1) \cdot 10^{-2}$

invisible energy spectrum MEG

exactly one photon $E_{\gamma} > 40 {
m MeV}$ in the detector. $\mathcal{B}_{\rm NP} \simeq 4.2 \cdot 10^{-13}$

assuming $E>10 {\rm MeV}$ and geometry cuts. $\mathcal{B}_{\mu \to 3e} \simeq 10^{-12}$

$\mu \to e \nu \bar{\nu}$

[Engel, Gnendiger, Signer, YU 18, Banerjee, Engel, Signer, YU soon]

example: Majoron searches in MEG

Majoron with $m_J \sim 0$, $\mathcal{B}_{\mu \to eJ} \sim 2 \times 10^{-3}$

example: Majoron searches in MEG

Majoron with $m_J \sim 0$, $\mathcal{B}_{\mu \to eJ} \sim 2 \times 10^{-3}$

$\begin{array}{c} \mu e \rightarrow \mu e \\ \\ \text{and} \end{array}$

 $\mu p \to \mu p$

Yannick Ulrich, 20.05.19 - p.11/14

- leptonic NNLO done [Bucoveanu, Spiesberger 18]
- second calculation using new methods in progress [Banerjee, Engel, Signer, YU soon-ish]
- hadronic correction \Rightarrow someone else's problem

- recent proposal to measure $a_{\mu}^{\rm HLO}$ with $\mu\,e$ scattering

- - requires theoretical uncertainties below $10^{-5} \Rightarrow$ at least NNLO (electronic contribution almost done)
 - $\mathcal{O}(\alpha^3 \log^3 \frac{m_e^2}{m_{\mu}^2}) \gg 10^{-5}$
 - NNLO not enough $\Rightarrow~$ resummation and exploratory N^3LO studies

details matter!

- $\mu \to e \nu \bar{\nu} \gamma$ and $\mu \to e \nu \bar{\nu} e e$ at NLO
- input into PiBeta reanalysis \Rightarrow current best value
- $\mu \rightarrow e \nu \bar{\nu}$ at NNLO: large corrections at the endpoints
- $\mu e \rightarrow \mu e$ and $\mu p \rightarrow \mu p$ at NNLO: ongoing