Measurement of $B \rightarrow \mu^+ \mu^-$ at CMS

Urs Langenegger

(Paul Scherrer Institute)

- Why?
- How?
- And?

Introduction

- LHC is a proton-proton collider with high luminosity $\mathcal{L} \approx 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - ▷ large $b\overline{b}$ production cross section $\approx 10 \text{ nb}^{-1}/\text{ s} \times 500 \times 10^3 \text{ nb} \approx 5 \times 10^6 b\overline{b}/\text{ s}$
 - b quarks form hadrons (mesons and baryons)
- B mesons
 - one beauty b quark (heavy)
 - one spectator quark (light)

- ▷ mass: $m \approx 5.3 \, \text{GeV}$
- \triangleright lifetime: $\tau \approx 1.5 \, \mathrm{ps}$

 $c\tau \approx 450 \,\mu \mathrm{m} \rightarrow \mathrm{they} \,\mathrm{fly!}$

'botanics' with many states:

$ B^0 angle$	$= \overline{b}d angle$	$ ar{B}^0 angle$	$= b\overline{d} angle$
$ B^+\rangle$	$= \overline{b}u angle$	$ B^-\rangle$	$= \ket{b\overline{u}}$
$ B_{s}^{0} angle$	$= \overline{b}s angle$	$ {ar B}^0_s angle$	$= b\overline{s} angle$

proton b **B**(s) B proton $B \equiv B^0, B_s^0, B^+$

Leptonic *B* decays

• Leptonic B decays have only leptons (e,μ,τ,ν) in final state

- ▷ for example: $B_s^0 \to \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^-$
- many other modes possible (or 'forbidden') as well

- They are strongly suppressed
 - SM branching fractions are small (ignoring tiny contributions from Higgs boson exchanges)

$$\begin{split} \bar{\mathcal{B}}(B^0_s \to \mu^+ \mu^-)_{\rm SM} &= (3.66 \pm 0.14) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-)_{\rm SM} &= (1.03 \pm 0.05) \times 10^{-10} \end{split}$$

- SM expectation: 4-5% theoretical uncertainty!
- $\triangleright \ \bar{\mathcal{B}}(B^0_s \to \mu^+ \mu^-): \text{ decay time-integrated } \mathcal{B}$

 $|B^0_{s{
m H,L}}
angle=p|B^0_s
angle\pm q|ar{B}^0_s
angle$ with different lifetimes

Why are they suppressed in the SM?

• Effective flavor-changing neutral currents ħ no flavor-changing neutral currents in SM $B_{d/s}^{0}$ Penguin and box diagrams, but no tree-level process d/s ▷ CKM-suppression of $B^0 \rightarrow \mu^+ \mu^-$ vs. $B^0_s \rightarrow \mu^+ \mu^-$: Forbidden in SM! $|V_{td}|^2 < |V_{ts}|^2$ $B_{d/s}^0$ Cabibbo-Kobayashi-Maskawa matrix d/s $\begin{pmatrix} d \\ s \\ b \end{pmatrix}_{\text{weak}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{\text{m}}$ С charm $V_{\rm CKM}$ W W $|V_{\rm CKM}| = \begin{pmatrix} 0.974 & 0.225 & 0.004 \\ 0.224 & 0.974 & 0.042 \\ 0.009 & 0.041 & 0.999 \end{pmatrix}$ S D C down strange • Helicity suppressed (V - A interaction in SM) \triangleright B mesons have no spin \triangleright μ have spin 1/2**p**₁ **p**₂ weak interaction is left handed

'Why?' Search for 'BSM' physics!

• Already small additional decay width contributions visible

because the SM decay width is so small

• Sensitivity to 'beyond-SM' physics

- no helicity suppression
 - scalar couplings
 - pseudo-scalar couplings
- 'extended' Higgs boson sectors
- $\triangleright~{\rm flavor}$ 'violation': $B^0_s \rightarrow \mu^+ \mu^-~{\rm vs}~B^0 \rightarrow \mu^+ \mu^-$

Two approaches

- model-independent: effective field theory
 - parametrize new physics with operators and (Wilson) coefficients
 - can include correlations to other processes $R_K^{(*)}, P_5', \ldots$
- 'top-down': specific model
 - new particles extending the SM world
 - correlations between many processes precisely calculable
 - more specific than above, but very model dependent

Why? Search not for 'BSM' physics!

- Already small additional decay width contributions visible
 - because the SM decay width is so small

• Sensitivity to 'beyond-SM' physics

- no helicity suppression
 - scalar couplings
 - pseudo-scalar couplings
- 'extended' Higgs boson sectors
- ▶ flavor 'violation': $B_s^0 \to \mu^+ \mu^-$ vs $B^0 \to \mu^-$

Two approaches

- model-independent: eff raye field theory
 - parametrize new bysics with operators and (Wilson) coefficients

 $B_{d/s}^0$

d/s

t,c,u q

W-. $\tilde{\chi}^-$

- can include conclations to other processes $R_K^{(*)}, P_5', \bullet$
- 'top-down's specific model
 - new particles extending the SM world
 - correlations between many processes precisely calculable
 - more specific than above, but very model dependent

$B_s^0 ightarrow \mu^+ \mu^-$ effective lifetime

A second independent observable: B⁰_s → μ⁺μ⁻ effective lifetime
 ▶ measure B⁰_s lifetime with B⁰_s → μ⁺μ⁻ decays

$$\tau_{\mu^{+}\mu^{-}} \equiv \frac{\int_{0}^{\infty} t \,\Gamma(B_{s}(t) \to \mu^{+}\mu^{-}) \,dt}{\int_{0}^{\infty} \Gamma(B_{s}(t) \to \mu^{+}\mu^{-}) \,dt} = \frac{\tau_{B_{s}^{0}}}{1 - y_{s}^{2}} \left(\frac{1 + 2\mathcal{A}_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s} + y_{s}^{2}}{1 + \mathcal{A}_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s}} \right)$$

- ▶ allows determination of \$\mathcal{A}_{\Delta\Gamma}^{\mu^+\mu^-}\$ \$B_s^0\$ mean lifetime \$\tau_{B_s^0}\$ = 1.510 ± 0.005 ps
 \$B_s^0\$ decay width difference \$\Delta \Gamma_s\$,
 \$\Delta \Gamma_s \equiv \Gamma_{SH}\$ = 0.088 ± 0.006 ps^{-1}
 \$y_s \equiv \tau_{B_s^0} \Delta \Gamma_s / 2 = 0.062 ± 0.006\$
 \$\Delta scalar vs. non-scalar 'new physics'
 \$\Delta M prediction: \$\Delta n n n + \frac{\Delta n}{\Delta n n + \Delta n - \Delta \De
- One measurement to date:
 - ▶ LHCb 2017: $\tau_{\mu^+\mu^-} = 2.04 \pm 0.44 \pm 0.05 \, \text{ps}$

PRL, 109,041801 PRL, 118,191801

Theoretical context

1908.07011 1902.08191

Experimental context

• $\overline{\mathcal{B}}(B^0_s \to \mu^+ \mu^-)$ and $\mathcal{B}(B^0 \to \mu^+ \mu^-)$ with long history:

Urs Langenegger

Methodology

• Measurement of $B_s^0 \to \mu^+ \mu^-$ relative to normalization channel:

$$\bar{\mathcal{B}}(B_s^0 \to \mu^+ \mu^-) = \frac{n_{B_s^0}^{\text{obs}}}{N(B^+ \to J/\psi K^+)} \frac{\varepsilon_{B^+}^{tot}}{\varepsilon_{B_s^0}^{tot}} \frac{f_u}{f_s} \mathcal{B}(B^+ \to J/\psi [\mu^+ \mu^-] K)$$

▷ $B^+ \to J/\psi K^+$, $J/\psi \to \mu^+\mu^-$, with $\mathcal{B}(B^+ \to J/\psi K^+) = (1.01 \pm 0.03) \times 10^{-3}$

• Reconstructed decays for this result:

- $\triangleright B \rightarrow \mu^+ \mu^-$: 'signal' sample
- ▷ $B^+ \rightarrow J/\psi K^+$: 'normalization' sample
- $\triangleright B^0_s \rightarrow J/\psi \phi$: 'control' sample for B^0_s mesons

Analysis steps

- strict muon identification with boosted decision tree
- tight candidate selection with (another) boosted decision tree
- unbinned (extended) maximum likelihood fits to selected events
 - branching fractions $\bar{\mathcal{B}}(B^0_s \to \mu^+ \mu^-)$ and $\mathcal{B}(B^0 \to \mu^+ \mu^-)$
 - effective lifetime $au_{\mu^+\mu^-}$

specific trigger paths

B physics trigger

- B physics mostly triggered with (displaced) dimuon (+X) triggers (displaced from pp collisions; B hadrons have a lifetime of about 1.5 ps)
 other setups are in progress/under analysis
- L1: hardware trigger based on muons
 - $\triangleright < 4 \, \mu s$ latency
 - ▷ no explicit muon p_{\perp} threshold (strong *B* field implies $p_{\perp} > 3$ GeV in barrel)
- HLT: high-level trigger
 - full tracking and vertexing

CMS-DP-2018-014 Displaced J/ψ and $B_s^0 \rightarrow \mu^+\mu^-$ triggers

• HLT 'displaced' J/ψ

- two muons with opposite charge
- ▷ $2.9 < m_{\mu\mu} < 3.3 \, \text{GeV}$
- $\triangleright \ell_{xy} / \sigma(\ell_{xy}) > 3$
- $\triangleright \cos \alpha > 0.9$, $\mathcal{P}(\chi^2/dof) > 10\%$

• HLT 'displaced' J/ψ + track(s)

two muons with opposite charge $2.9 < m_{\mu\mu} < 3.3 \,\text{GeV}, \, \ell_{xy} / \sigma(\ell_{xy}) > 3$

$$\triangleright \cos \alpha > 0.9$$
, $\mathcal{P}(\chi^2/dof) > 10\%$

invariant mass requirements on tracks (targeted towards $\phi \to K^+ K^-$)

• HLT $B_s^0 \rightarrow \mu^+ \mu^-$

- two muons with opposite charge
- ▷ inv. mass $4.8 < m_{\mu\mu} < 6.0 \,\text{GeV}$
- ▷ $p_{\perp} > 4.0(3.5)$ GeV, $\mathcal{P}(\chi^2/dof) > 0.5\%$
- no displacement requirement!

Dataset

Reconstruction I

Reconstruction II

- **Isolation** (optimized cuts for background rejection and data/MC similarity)
 - $I \equiv p_{\perp B} / (p_{\perp B} + \sum_{\text{trk}} p_{\perp}): p_{\perp} > 0.9, \Delta R < 0.7, d_{\text{ca}} < 0.05 \text{ cm}$
 - ▷ $I_{\mu} \equiv p_{\perp\mu}/(p_{\perp\mu} + \sum_{\text{trk}} p_{\perp})$: $p_{\perp} > 0.5, \Delta R < 0.5, d_{ca} < 0.1 \text{ cm}$
 - ▷ $N_{\rm trk}^{\rm close}$: count tracks with $p_{\perp} > 0.5 \, {\rm GeV}$ and $d_{\rm ca} < 0.03 \, {\rm cm}$
 - \triangleright d_{ca}^0 : minimum d_{ca} of these tracks to B-SV

 $(\sum_{trk} w/ tracks from B-PV or no other PV, but passing <math>d_{ca}$ requirement)

Multi-variate analysis

- Boosted decision tree
 - Run 1: BDT unchanged wrt PRL,111,101804
 - 2016: new BDT trained (same variables)
- BDT training (TMVA)
 - ▷ signal: $B_s^0 \to \mu^+ \mu^-$ MC simulation
 - background: data dimuon sidebands
 - avoid selection bias
 - split data randomly into three subsets (0,1,2)
 - train on 0, test on 1, apply on 2. etc.
 - \rightarrow in each channel, have 3 BDTs
 - many validation studies
 - defines categories for best sensitivity
- Systematic uncertainty
 - \triangleright double ratio D
 - 5-10% on efficiency ratio
 - 0.07 ps on effective lifetime

 $\frac{\varepsilon(B^+ \to J/\psi K^+)}{\varepsilon(B^0_s \to J/\psi \phi)}$

Fit model

• 3D Fit for
$$\bar{\mathcal{B}}(B^0_s \to \mu^+ \mu^-)$$
 and $\mathcal{B}(B^0 \to \mu^+ \mu^-)$

 $P(m_{\mu\mu};\sigma(m_{\mu\mu})) \times P(\sigma(m_{\mu\mu})/m_{\mu\mu}) \times P(\mathcal{C})$

- \triangleright dimuon mass $m_{\mu\mu}$
- ▷ per-event dimuon mass resolution $\sigma(m_{\mu\mu})$
- \triangleright C: binary distribution for dimuon bending configuration (against possible bias) $C(\pm 1)$: bending towards (away from) each other

• Components of model

Component	Mass	Width	Mass resolution
Signal	CB	KEYS, $\sigma_{\rm CB} = \kappa imes \sigma(m_{\mu\mu})$	KEYS
Background hh	CB+G	KEYS	KEYS
Background $h\mu\mu$, $h\mu\nu$	KEYS	n/a	KEYS
Combinatorial background	Bernstein pol1	n/a	KEYS (sideband)

(CB: crystal-ball, G: Gaussian)

- ▶ 2 parameters of interest: $\overline{\mathcal{B}}(B_s^0 \to \mu^+ \mu^-)$ and $\mathcal{B}(B^0 \to \mu^+ \mu^-)$
- constraints on nuisance parameters
 - gaussian: f_s/f_u , $B^+ \rightarrow J/\psi K^+$, efficiency ratios
 - lognormal: rare background yields

• 1-3% systematic error from unknown $B_s^0 \rightarrow \mu^+ \mu^-$ eff. lifetime

Rare background yields

- Rare background yield expectations
 - known branching fractions
 - absolute yield from normalization sample:

$$n_{B_x \to hh}^{\exp} = \frac{\varepsilon_B^{tot}}{\varepsilon_{B^+}^{tot}} \frac{f_u}{f_x} \frac{\mathcal{B}(B_x \to hh)}{\mathcal{B}(B^+ \to J/\psi \, [\mu^+ \mu^-]K)} \times N(B^+ \to J/\psi \, [\mu^+ \mu^-]K)$$

with

$$\varepsilon_{tot}^{B \to hh} = w_{+}(p_{\perp}, \eta) \times w_{-}(p_{\perp}, \eta) \times \varepsilon_{ana}^{(BDT)} \times A \times \frac{1}{2} \varepsilon_{tri}^{sig}$$

- rare hadronic decays: complete set
- rare sl decays: incomplete set/low statistics → scale factor in low sideband
- extensive validation with inverted muon ID selection
- new muon ID: peaking background is very small

Candidates / 0.050 GeV

Results I

Combined mass projection for high-BDT categories CMS Preliminary 36 fb⁻¹ (13 TeV) + 20 fb⁻¹ (8 TeV) + 5 fb⁻¹ (7 TeV)

Results II

• Primary result from 2D UML fit:

 $au(B_s^0 o \mu^+ \mu^-) = 1.70^{+0.61}_{-0.44}\,{
m ps}$

systematic error small: 0.09 ps
 expected error: (^{+0.39}_{-0.30}) ps

- \Rightarrow Consistent with SM
 - Result from *sPlot* method:

Conclusions

• $B_s^0 \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$ decays with Run 1 and 2016 data > update of branching fraction measurements

 $\overline{\mathcal{B}}(B_s^0 \to \mu^+ \mu^-) = [2.9^{+0.7}_{-0.6}(\exp) \pm 0.2(f_s/f_u)] \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.6 \times 10^{-10} \quad (95\% \text{CL})$

 $(B_s^0 \rightarrow \mu^+ \mu^- \text{ significance: } 5.6 \sigma \text{ obs}, 6.5 \sigma \text{ exp, these results supersede PRL,111,101804})$

- ▷ first $au_{\mu^+\mu^-}$ measurement of CMS $au_{\mu^+\mu^-} = 1.70^{+0.61}_{-0.44} \, \mathrm{ps}$
- all results consistent with SM do not over-interpret 'low' result(s)!
- (very) long delay due to MC issues 'irrelevant' in statistics limited result

- End of PSI involvement in $B \to \mu^+ \mu^-$
 - ▷ focus on other decays leptonic (forbidden) *B* decays with hadronic τ reconstruction maybe eventually $B_s^0 \rightarrow \tau^+ \tau^-$??

Summary of systematic errors

- Uncertainties dominated by small signal sample size
 - \triangleright relative errors for $\overline{\mathcal{B}}(B^0_s \to \mu^+ \mu^-)$, absolute for $\tau_{\mu^+ \mu^-}$

Source	$\overline{\mathcal{B}}(B^0_s o \mu^+ \mu^-)$ [%]	$ au_{\mu^+\mu^-}$	[ps]
		2D UML	sPlot
Kaon tracking	2.3 – 4	_	_
Normalization yield	4	_	_
Background yields	1	0.03	(*)
Production process	3	—	—
Muon identification	3	—	—
Trigger	3	—	—
Efficiency (data/MC simulation)	5 — 10	—	(*)
Efficiency (functional form)	—	0.01	0.04
Efficiency lifetime dependence	1 – 3	(*)	(*)
Era dependence	5 – 6	0.07	0.07
BDT discriminator threshold	_	0.02	0.02
Silicon tracker alignment	_	0.02	_
Finite size of MC sample	_	0.03	—
Fit bias	_	_	0.09
C-correction	_	0.01	0.01
Total systematic uncertainty	$\binom{+0.3}{-0.2} \times 10^{-9}$	0.09	0.12
Total uncertainty	$\binom{+0.7}{-0.6} \times 10^{-9}$	$+0.61 \\ -0.44$	$+0.52 \\ -0.33$
(*) included in other item			

▷ successful cross check of σ_{syst} with measurement of $\mathcal{B}(B_s^0 \to J/\psi \phi)$

Fit details (numbers)

- Obs signal yield $60.8^{+14.5}_{-13.3}$ with $\langle p_{\perp} \rangle = 17.2 \, \text{GeV}$
 - \blacktriangleright peaking background is pprox 5-10% of $B^0
 ightarrow \mu^+\mu^-$ yield
 - uncertainties include statistical and systematic errors
 - ▷ signal yields (and errors) determined from \mathcal{B} (and include normalization errors)

Category	$N(B_s^0)$	$N(B^0)$	N_{comb}	$N_{\rm obs}^{B^+}/100$	$\langle p_{\perp}(B^0_s) angle [{ m GeV}]$	$arepsilon_{ ext{tot}}/arepsilon_{ ext{tot}}^{B^+}$
2011/central/high	$3.6\substack{+0.9 \\ -0.8}$	$0.4^{+0.7}_{-0.6}$	8.4 ± 3.8	750 ± 30	16.4	3.9 ± 0.5
2011/forward/high	$2.0^{+0.5}_{-0.4}$	$0.2^{+0.4}_{-0.3}$	3.2 ± 2.2	220 ± 12	14.9	7.5 ± 0.8
2012/central/low	$3.7\substack{+0.9 \\ -0.8}$	$0.4^{+0.6}_{-0.6}$	115.8 ± 11.3	790 ± 32	16.1	3.8 ± 0.5
2012/central/high	$9.3^{+2.3}_{-2.1}$	$1.0^{+1.7}_{-1.6}$	30.2 ± 7.3	2360 ± 95	17.3	3.2 ± 0.4
2012/forward/low	$1.7^{+0.4}_{-0.4}$	$0.2^{+0.3}_{-0.3}$	116.7 ± 11.0	190 ± 9	14.3	7.3 ± 1.0
2012/forward/high	$4.7^{+1.2}_{-1.1}$	$0.5_{-0.8}^{+0.9}$	31.0 ± 6.5	660 ± 27	15.5	5.9 ± 0.8
2016BF/central/low	$2.2^{+0.5}_{-0.5}$	$0.2\substack{+0.4 \\ -0.4}$	43.0 ± 7.1	580 ± 23	17.5	3.1 ± 0.4
2016BF/central/high	$4.0^{+1.0}_{-0.9}$	$0.4^{+0.8}_{-0.7}$	13.3 ± 4.7	1290 ± 57	19.3	2.5 ± 0.3
2016BF/forward/low	$3.7^{+0.9}_{-0.8}$	$0.4_{-0.7}^{+0.7}$	168.8 ± 13.5	780 ± 31	15.8	3.9 ± 0.5
2016BF/forward/high	$8.1^{+2.0}_{-1.8}$	$0.8^{+1.5}_{-1.4}$	64.2 ± 9.7	1920 ± 78	17.5	3.4 ± 0.4
2016GH/central/low	$4.1^{+1.0}_{-0.9}$	$0.4^{+0.8}_{-0.7}$	128.8 ± 12.0	1020 ± 44	17.2	3.3 ± 0.4
2016GH/central/high	$3.6^{+0.9}_{-0.8}$	$0.4^{+0.7}_{-0.6}$	7.8 ± 3.6	1320 ± 54	20.8	2.2 ± 0.2
2016GH/forward/low	$6.1^{+1.5}_{-1.4}$	$0.6^{+1.1}_{-1.0}$	133.4 ± 12.5	1260 ± 51	16.2	3.9 ± 0.4
2016GH/forward/high	$3.9^{+1.0}_{-0.9}$	$0.4_{-0.7}^{+0.8}$	14.1 ± 4.6	1180 ± 49	19.5	2.7 ± 0.3

A note on f_s/f_u

- f_s/f_u is external input for $\overline{\mathcal{B}}(B^0_s \to \mu^+ \mu^-)$
 - experimental situation not entirely clear
 - LHCb sees p_{\perp} -dependence (PR,D100,031102)
 - ATLAS does not see p_{\perp} -dependence (PRL,115,262001)
 - CMS does not see p_{\perp} -dependence (internal study with control sample)
 - \triangleright fragmentation fraction x_B not measured

(x_B : fraction of b momentum $\rightarrow B$)

Ad hoc error added

▷ PDG $f_s/f_u = 0.252 \pm 0.012$, based on

 $\sqrt{s} = 7 \, {\rm TeV} \; {\rm results} \; {\rm of} \; {\rm LHCb}/{\rm ATLAS}$

additional ad-hoc error

difference between PR,D100,031102 and PDG p_{\perp} dependence from PR,D100,031102

 $f_s/f_u = 0.252 \pm 0.012 (\text{exp.}) \pm 0.015 (\text{CMS})$

- ⇒ Our result can be rescaled $\checkmark \sqrt{s}$ and p_{\perp} of signal candidates provided
 - for each category/channel/running period

Lifetime fitting

- Determination of proper decay time $t = m \ell_{3D}/p$ in 3D space
- 2D unbinned extended maximum likelihood fit to
 - ▶ B mass and t decay time in the range 1 < t < 11 ps
 - (σ_t as conditional parameter, complete propagation of uncertainties)
 - Efficiency correction (mostly HLT)
 - model components

mass	shape	source	fit params
Signal	CB	MC	fixed
BG $h\mu u$, $h\mu\mu$	G	w8-MC	fixed
BG $hh, B^0 \rightarrow \mu^+ \mu^-$ Combinatorial BG	CB+G Bernstein pol1	w8-MC sideband	fixed floating
decay time	shape	source	fit params
Signal BG $h\mu u$, $h\mu\mu$	expo⊗res ^(*) expo⊗res	MC w8-MC	floating fixed
BG $hh, B^0 \rightarrow \mu^+ \mu^-$ Combinatorial BG	expo⊗res expo⊗res	w8-MC sideband	fixed floating

• *sPlot* lifetime fit

(st) 'res' includes resolution and efficiency (no efficiency correction for the combinatorial background)

- ▷ sPlot weights from $\overline{\mathcal{B}}(B^0_s \to \mu^+ \mu^-)$ model
- binned maximum likelihood fit with resolution and efficiency modeling
- custom algorithm for correct (asymmetric) uncertainties
- \Rightarrow Consistent results between the two setups

JINST 3, S08004

The CMS detector

3D tracking and vertexing

Muon reconstruction

- drift tubes
- cathode strip chambers
- resistive plate chambers
- Muon reconstruction
 - standalone muon: in muon system (trigger ingredient)
 - ▷ 'soft': high efficiency for J/ψ analyses
 - ▶ 'BDT': low misidentification for $B \rightarrow \mu^+ \mu^-$ analyses

 $D^{*+} \rightarrow D^0 \pi^+_s \rightarrow K^- \pi^+ \pi^+_s$

Muon misidentification for BDT muons $\varepsilon(\mu|\pi) \approx 0.06\%$ $\varepsilon(\mu|K) \approx 0.10\%$ $\varepsilon(\mu|p) \leq 0.01\%$ measured/validated in data: $K_S^0 \rightarrow \pi^+\pi^-, \phi \rightarrow K^-K^+, \Lambda \rightarrow p\pi^-$

