Simulation of μ p diffusion in the HyperMu target

LTP Seminar 28 October 2019

Jonas Nuber

 Collisional quenching (F=1→F=0) of µp in H₂ is crucial part of measurement

 Energy kick of ~0.1 eV distinguishes excited from non-excited µp atoms

Diffusion of μp atoms in H₂ gas is central for the measurement

The μp / μd diffusion project

Implementation of physics of muonic hydrogen in Geant4 atomic formation molecular scattering • molecular formation isotopic exchange Simulations for muX Simulations for HyperMu investigate influence of various optimise target geometry target parameters

optimise target geometry regarding μ p diffusion

lacksquare

•

compare simulation results with measurement

The μp / μd diffusion project

Negative muons in hydrogen gas

- Atomic capture after muon stopping:
 - De-excitation cascade (external Auger, radiative, Coulomb collisions)
 - Initial energy of µp: meV to several eV, high energy µp up to over 100 eV

• Molecular scattering: $\mu p + XY \rightarrow \mu p + XY$

- Isotopic exchange: $\mu p + d \rightarrow \mu d + p + 135 \text{ eV}$
- Transfer to heavy nuclei: $\mu p \rightarrow (\mu Z)^*$

Molecular formation and muon-catalyzed fusion

Rates for molecular formation at liquid hydrogen density:

$$\lambda_{p\mu p} = 1.89 \cdot 10^6 \frac{1}{s} \qquad \lambda_{p\mu d} = 5.80 \cdot 10^6 \frac{1}{s}$$

[Bleser et al., Phys. Rev. 132:2679, 1963]

4

Let's talk about HyperMu

μp diffusion in HyperMu

• Molecular scattering:

differential cross sections calculated by A. Adamczak

• $p\mu p$ formation:

only small contribution in HyperMu due to low H₂ density

Signal peak only existing when laser is on resonance!

6

Signal peak only existing when laser is on resonance!

resonance curve

laser frequency

Simulations for HyperMu

Diffusion and thermalisation before laser enters cavity

Diffusion of laser-excited μ **p** atoms

Combined simulation of signal and background

Thermalisation after µp formation

- Time for thermalisation: ~ 1 μ s (d = 1 mm, p = 1 bar)

independent of initial energy

- After cascade, statistical distribution over hyperfine states: 75% (F=1), 25% (F=0)
- µp are quenched and thermalised in collisions with H₂ molecules

μ p diffusion to wall before laser

- During thermalisation, some μp diffuse to wall or decay
- Uniform stopping distribution is assumed (low pressure, short distance)

• Strong peak in center is good for signal-to-background ratio

Diffusion after laser excitation

Fluence and excitation probability

Far from saturation, number of laserexcited μp reaching the wall grows linearly with fluence

Performance of laser system is crucial!

Probability of excitation of a μ p is determined by laser fluence

Figure of merit for signal over background

probability per muon to produce wall hit

Results of combined simulations

- Identify optimal geometry by parameter scans
- Results can be used to estimate measurement time

e.g. for
$$4\sigma$$
: $t_{point} = \left(\frac{4}{0.005}\right)^2 \cdot \frac{1}{R_{\mu}} \cdot \frac{1}{\epsilon_{tot}} \approx 3 \text{ h}$

$30 \text{ K} \rightarrow 50 \text{ K}$

$$\eta = \frac{S}{\sqrt{S + BG}}$$

Thermalised μp atoms move slower in H₂ gas at T = 30 K

 \rightarrow reduction of intrinsic background

Background II: Muon decay

 Misinterpreted muon decays produce additional source of background

• Below: Ratio between number of signal hits within time interval Δt and number of decays of muons which are still present in the target

Summary

- Diffusion of μp atoms is central in the HyperMu experiment
 - Signal: diffusion of laser-excited μ p atoms to walls
 - Irreducible background: diffusion of thermal μ p atoms to walls
- Monte Carlo simulations of µp diffusion help to design the target and to estimate the measurement time
- HyperMu is a challenging experiment with strong constrains on target geometry, laser system and detector system
 - filigran and short gas cell
 - high fluence is crucial (laser system + cavity)
- Next beam time in two weeks !!

Backup slides

Impact of the cavity lifetime

- Limited reflectivity of mirrors leads to exponential decrease of laser intensity
- Convolution of signal histogram with intensity profile smears peak to higher t

(input) parameters of the simulation

Diffusion before laser

Hits with / without decay

Combined signal and background simulation

double counts

p = 2.0 bar, d = 0.5 mm

d' = 0.45 mm

Angle of hits

 Θ for BG (blue) and Signal (red)

mean angle in interval t1-t2 for BG (blue) and Signal (red)

 Θ for BG (blue) and Signal (red) including decay

Energy of hits

Energy of laser-excited mup hitting wall in time windows [100-200]ns(blue) and [200-300]ns(red)

Energy of laser-excited mup hitting wall in time windows [300-400]ns(blue) and [400-500]ns(red)

mean Energy in interval t1-t2 for Signal hits

p = 0.8 bard = 1.0 mm

T = 30 K Only laser excited atoms

d' = 0.25 mm

$E_0 = 2MWB (50 \text{ K}, 20 \text{ eV})$

F=1.9 J/cm2, R=0.995

d [mm]

2

1.8 1.6 1.4 1.2 1 0.8 0.6 0.5

 $E_0 = delta(100 eV)$

d [mm]

2

1.8

1.6

F=1.9 J/cm2, R=0.995

F=0.8 J/cm2, R=0.988 0.003 0.0025

F=0.8 J/cm2, R=0.988