Future Machines #2

Closeout

Michael Böge (PSI), Simon C. Leemann (ALS)

HEPS Injection (Gang Xu)

With antibend &ID Case (Circonference=1360.4m)

h=756, E0=6000, $\alpha p=1.35*10^{-5}$, U0=4.5, $\Phi=\pi h \alpha p E0$

δacc=0.03, $Vacc=δacc^2 Φ$, φs=π

 Δt =2.14ns between injecting and circulating beam(center to center) If considering effect of GolfClub Δt =2.4ns

• Single-bunch 15 nC, initial vertical offset $y lini = 300 \mu m$, initial bunch length $\sigma lt - ini = 40 ps$, initial energy spread $\sigma lt - ini = 0.001$

Transmission is only 84%

RF gymnastics for long. acc. & swap-out with BR for acc.@high E

Challenge of "swap-out" injection: a full charge injector

"Charge recovery" in the booster at 6 GeV

RF Modulation --- elegant tracking

- Phase Modulation
 - Modulation amplitude: 0.1rad:
 - Modulation frequency: ~26kHz, corresponding to 2 times synchrotron oscillation frequency:

DIAMOND-II Accumulator (Ian Martin) Build new BR for use as AR @ low E

- 3.5 GeV
- > emittance in range 10-30 nm.rad
- > bunch length in range 20-40 ps

New Booster: Installation Strategy

x (m)

 $-\beta = 5 \, \text{m}$

- β = 10 m

Ian Martin, Accumulator for Diamond-II, PSI, Apr 2019

- · Off-axis accumulation
- Standard 4-kicker bumps for stored beam
- Kicker 3 contains thin (1 mm) 'anti-septum' plate
- Appears like a drift space for injected beam

Diamond-II: Injection

• Separation of stored / injected beams ~ 3mm

Magnetic Length	1.67 m	0.6 m	
Bend angle	148.4 mrad	9.3 mrad	
Bend radius	11.3 m	64.5 m	
Magnetic field	1.04 T	0.18 T	
Pulse shape	Full-sine	Half-sine	
Pulse duration	160 μs	6 µs	
Rep rate	5 Hz	5 Hz	

iniected beam

100 120 140 160 180 200

*C. Gough, M. Aiba, IPAC'17, MOPIK104

diamond

	Energy Range	GeV	0.1 to 3.0	0.1 to 3.5	
	Final Emittance	nm.rad	134.4	13.9	
	Circumference	m	158.4	170.5	
	Betatron Tunes	-	[7.18, 4.27]	[13.17, 4.37]	
	Natural Chromaticity	-	[-9.7, -6.3]	[-25.7, -10.1]	
	Final Energy Spread	-	7.3×10 ⁻⁴	10.5×10 ⁻⁴	
	Peak Energy Loss per Turn	MeV	0.58	1.64	
	Mom. Compact. Factor	-	25.2×10 ⁻³	2.77×10 ⁻³	
	Natural Bunch Length	ps	99.3	41.1	
	Peak RF voltage	MV	0.9	2.0	
i	RF acceptance	%	0.24	0.58	
	Damping Times (τ_x, τ_y, τ_s)	ms	[5.46, 5.47, 2.74]	[2.43, 2.43, 1.22]	
	Repetition Rate	Hz	5	5	

Injection for SLS-II (Masamitsu Aiba) A, & anti-septum for off-axis @ low beta

• Results:

Observations:

- So-called "Golf-club acceptance" was clearly observed
- Good agreement with simulation except for V_{rf} =2.0 MV
- Given that the observed discontinuity of bucket this is attributed to a fragile transverse acceptance at large momentum deviation (more argument in next slide)

For technical aspects of septum and kicker, see Chris Gough's talk tomorrow morning

Anti-septum + Longitudinal injection

- Short pulse kicker can be placed at the next straight section
- "One-arc dynamic aperture" must be large enough
- Anti-septum injection = Quasi-on-axis injection → Reasonable kick angle, ~1 mrad for $\beta_v = 4$ m

- after injection beam passes
- Enough for mechanical stiffness
- Injection into ~5 mm aperture is possible

Observations & Discussions

- Diamond has decided to optimize 6BA brightness through energy increase (3→3.5 GeV) rather than emittance decrease (160 pm rad @ 3.5 GeV in 561 m) → should help with IBS and Touschek
 - Does this only work for Diamond users (~20 keV)?
 - For other projects: can users' demands only be satisfied by minimizing emittance?
- Different types of RF gymnastics proposed for longitudinal injection (SOLEIL, HEPS, PLS-II)
- Lots of experience in proton machines, but in light sources what is there beyond Peter's/Masamitsu's measurements on BESSY-II? Where do we take confidence from?
- What about effect of transients?
 - \circ ALS with only modest 3HC tuning & 10% gap \rightarrow 20 deg transient \sim = 120 ps
 - In 4GSRs: gaps might be shorter, use active HCs and/or FBs
- No matter if we do on-axis or off-axis, we need short-pulse kickers (developments need to start well ahead of projects)
 - Low frequency helps (100 MHz \rightarrow 20 ns kicker pulses)
 - Short-pulse kickers allow for single-bunch injection → 1/h perturbation → injection becomes much more transparent regardless of
 - On the other hand, (short) gaps will likely remain necessary → trains remain an option → do flat-top requirements preclude short rise/fall times?
- Longitudinal accumulation appears to be much more robust compared to transverse accumulation, but will our
 machines still offer enough MA to enable it going forward (Bob Hettel: "If you have DA MA left you haven't pushed
 your lattice hard enough")