Status of NSLS II

F. Willeke, BNL
Particle Accelerator Conference 2011, New York City
March 29, 2011

NATIONAL LABORATORY
BROOKHAVEN SCIENCE ASSOCIATES

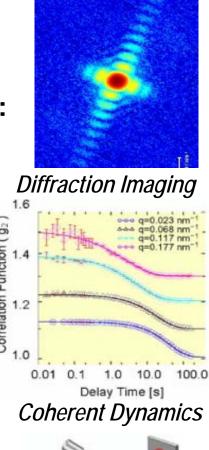
Outline

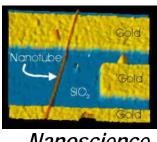
- Requirements
- Design
- Facility Status
- Injectors
- Critical Subsystems
- Insertion Devices
- Photon Beam Lines
- Construction Status
- Summary

Mission

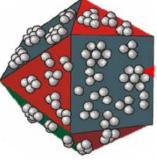
 NSLS: a very productive light source 4th decade of operation Strong on-going science program

• State of the art of accelerator technology: Factor 10⁴ increase in brightness, Factor 10 increase in flux

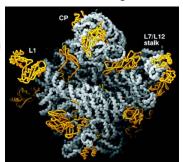

- More than a quantitative step
- 2005: DOE acknowledges mission need for a synchrotron radiation facility with 1 nm spatial resolution
 0.1 meV energy resolution
- Start of NSLS-II Project: 2005 CD 0


2007 CD 1

2008 CD2


2009 CD3

2015 CD4



Nanoscience

Nanocatalysis

Life Science

Requirements

Average Spectral Brightness: 10²¹·mm⁻²·mrad⁻²·s⁻¹·0.1%bw⁻¹

Spectral Flux Density: $10^{15} \cdot \text{s}^{-1} \cdot 0.1\% \text{bw}^{-1} @ 2 \text{ keV}$

Accelerator Main Parameters

beam energy: 3 GeV

beam intensity: 500mA

Intensity Stability 0.5% → Top-Off Injection mode

small beam emittance: $\varepsilon_x = < 1 \text{ nm rad}$,

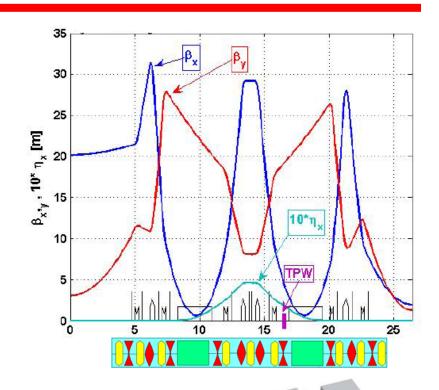
 ε_y = 8 pm rad

orbital stability: $\Delta y < 0.3 \mu m$

RF Phase Stability 0.01 Degree

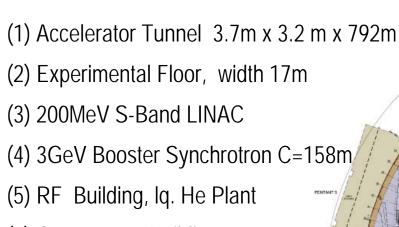
Number of beamlines > 60

Low Emittance Lattice Design

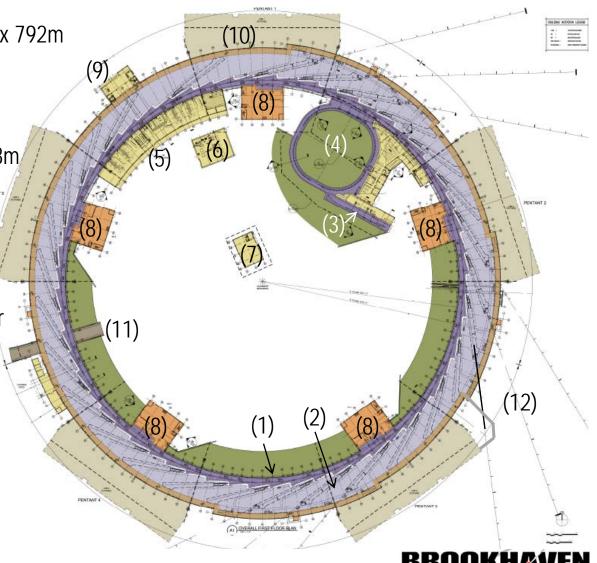

- Large Circumference 792 m 30 DBA cells $\epsilon_x \sim N_{cell}^{-3}$
- Soft Bending Magnet B= 0.4 T

 $\beta_{x-max} \sim \xi \sim 1 / L_{bend}$

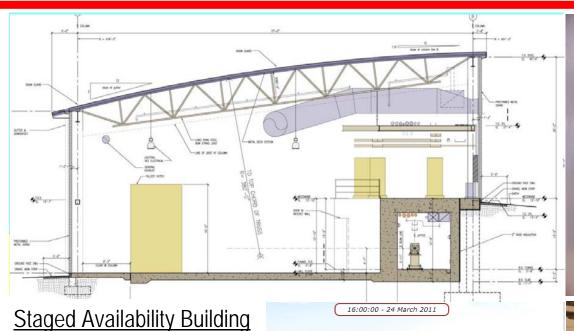
- \Rightarrow Achieve close to theoretical minimum emittance without excessive chromaticity $\epsilon_x = 2 \text{ nm}$
- Soft bend, low radiation loss Emittance ~ 1/ρ
 low radiation loss, 283 keV/turn/electron
- → efficient use of damping wigglers to reduce emittance by increased betatron damping rate


3 x 2 x 3.5 m wiggler @ 1.8 T: ε_x = 1 nm (baseline)

8 x 2 x 3.5 m wiggler @ 1.8 T: $\varepsilon_x = 0.6$ nm (optional)



Facility Overview


- (6) Compressor Building
- (7) Central Cooling Tower
- (8) Service Buildings: HVAC, DI water
- (9) Lobby
- (10) Laboratory and Office Buildings
- (11) Vehicle underpass
- (12) Extra long beam line

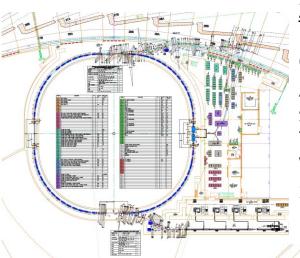
BROOKHAVEN SCIENCE ASSOCIATES

Facility Overview

Mar 15 '11 1st pentant: RF May 18 '11 Jul 28 '11 Injector 2nd Pentant Jun 2 '11 Sep 27 '11 3rd Pentant

4th Pentant Nov 28 '11

Feb 9 '12 5th Pentant

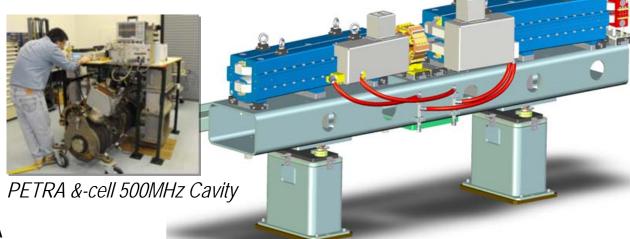


NSLS-II INJECTOR

on-energy top-off injection with 1/min top-off rate

200 MeV LINAC

Frequency S-Band
Charge 15nC
ΔE/E <1%
sectors


Thermionic Gun Sub-harmonic 500MHz Buncher Variable bunch patters, single bunch-300ns pulse train Solid state modulator

3 GeV Booster

Combined Function Lattice

Circumference 158m
Injection Energy 200Mev
Extraction Energy 3GeV
Cycle Frequency 1Hz
Charge 10-15nC

@20-30mA

Injector Status

- Injector Building Ready July 28, 2011
- LINAC Turn Key Contract Award April 2010 (RI)

Design Complete

production of components in progress

Frontend Delivery: June 2011

LINAC Delivery and start Installation August 2011

Booster Semi-turnkey Contract Award: May 2010 (BINP)

Design Finalized, Prototypes of components being produced

Booster Installation : Spring 2012

Critical Subsystems with Novel Features

Magnet Systems

- high field quality,
- micron mechanical reproducibility,
- 30 micron alignment tolerance
- 25 nm mechanical stability

RF

- High Beam loading,
- High RF phase stability
- bunch lengthening

Instrumentation

- Sub-micrometer BPM
- •Pico-meter emittance measurements

Controls

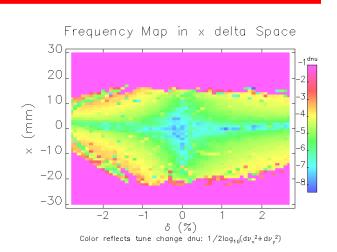
- High speed real time deterministic data communication
- •Integrated high level controls
- •Integrated equipment database

Power Supplies and Electronics

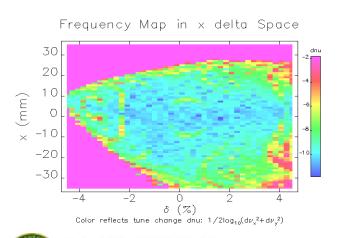
High reliability

Insertion Devices

- ohigh field quality
- o novel materials

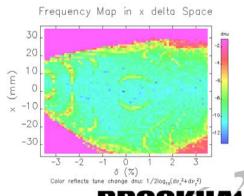

Magnet Field Quality

Medium energy (3GeV) + High intensity (500mA) + low emittance (<1nm, 8pm) beam


Lifetime strongly dominated by Touschek effect Low emittance lattice with moderate chromaticity and highly optimized sextupole fields

(3 chromatic families, 6 families for nonlinear optimization)

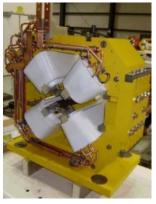
Dynamic aperture fair: 15 mm x 3 mm @ 2.5% momentum deviation @ $\tau_{Touschek}$ = 3 hrs

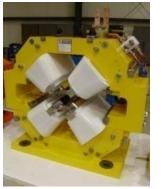

- Large Dynamic Aperture shrinks for quadrupole and sextupoles with "normal field quality
- \rightarrow small field errors required: systematic errors $\Delta B/B=10^{-4}$, nonsystematic $\Delta B/B10^{-5}$ @ 25mm

Allowed Relative Field Error Quadrupoles @ r=25, x 10-4

	Norma	d Aperture	Large Aperture			
n	norm	skew	norm	skew		
Symmetry-allowed						
6	3	0	0.5	0		
10	3	0	0.5	0		
14	3	0	0.1	0		
Symmetry-unallowed						
3	2	2	3	1.5		
4	2	1	2	1		
5	1	1	0.3	0.1		
6	-	1	-	0.1		
7-9	1	1	0.1	0.1		
10		1	-	0.1		
14	-	1	-	0.1		
11-13,15	0.5	0.5	0.1	0.1		

Need 90mm aperture quads in center of achromate


BROOKHAVEN
NATIONAL LABORATORY
BROOKHAVEN SCIENCE ASSOCIATES

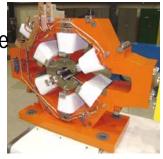

Storage Ring Magnet Systems

based on successful prototypes

Normal Quadrupole Magnet 120 Units to be built by BINP

Wide Quadrupole 120 Units to be built by TESLA Ltd

156mm and 100 mm DC dipole correctors (192 units) to be built by Everson Tesla



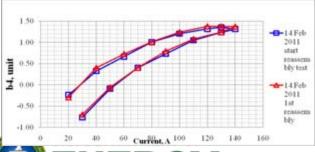
BROOKHAVEN SCIENCE ASSOCIATES

Normal Sextupole 169 Units to be built by Danfysik

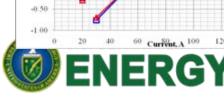

Wide Sextupole 75 Units to be built by IHEP

Dipoles 54 units 35 mm gap and 6 units with 90mm gap to by built by Buckley

30 large aperture sextupoles and 60 large aperture quadrupoles To be built by Buckley **Industries**


Magnet Production

- 7 Contracts awarded in Fall 2009
- All manufacturers made large effort to meet high and reproducible field qualit
- ~ 6-12 months development needed before production could start
- Advanced Production methods provide 10 micron precision of pole structure and 3 micron mechanical reproducibility
- Magnet production is taking off and ~15% of production is completed



Magnet acceptance Testing at BNL

Remarkable reproducibility after deassembly-reassembly

BROOKHAVEN SCIENCE ASSOCIATES

Precision machining

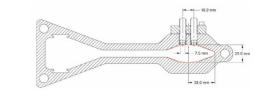
EDM

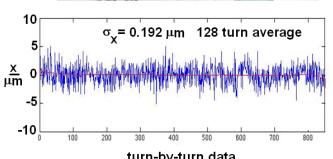
Fine planking

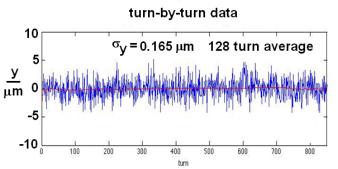
Girder, Supports and Integration

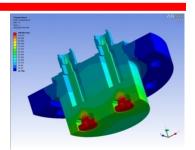
- Girder girders have been designed and manufactured for low vibration response ($f_{res}>30Hz$) and high thermal stability
- Visco-elastic layers in supports are an important feature
- A precision alignment procedure based on stretched wire with AC current was developed which allows to measure magnet center with 5 μm precision
- Intricate procedure to align the magnet and secure high precision alignment while girders are transported and installed developed
- Alignment performed in temperature controlled enclosure Which mimics tunnel conditions
- Procedure fully tested
- First girder equipped with magnets, vacuum components and diagnostic equipment

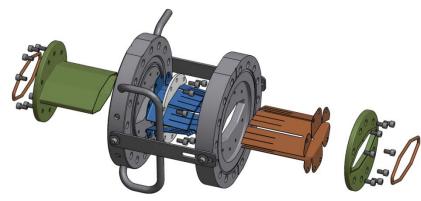
Environmental Room ($\Delta T < 0.1 C$) for 30 μ m Precision Alignment


First Fully Integrated NSLS-II Magnet Girder




Instrumentation-BPM System

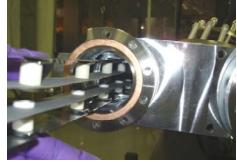

- New improved Button Monitor, Boron-Nitride Heat distribution washers avoid beam heating issues
- In-house development BPM electronics. 500MHz band pass filter, sampling at 117MHz, pilot tone mixed with beam signal for continuous relative calibration of channels
- Beam test at ALS confirm: meet demanding NSLS-II requirements resolution 0.2 μm, stability 0.2 μm)
- Detrimental TE (H) modes in keyholeshaped beam pipe exited by beam
- → RF shield separates beam- from antechamber



Vacuum System

- Vacuum System Based on extruded Aluminum
- Multistage production with final integration in-house
- •Status: ~1/3 of chambers ready for installation

- Glidcop masks absorb synchrotron radiation
- New Design Shielded Bellow, Ag+Rh coated sleeves
- •First Units being manufactured in-house





Storage Ring RF

Requirements

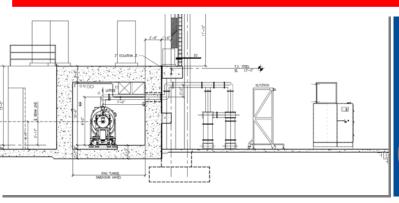
	Baseline Capability with 2 RF Cavity Systems Required Voltage 3.3 MV		Fully Build-out Capability with 4 RF Cavity Systems Required Voltage 5 MV		
	#	P(kW)	#	P(kW)	
Dipole	60	144	60	144	
Damping wiggler	3 (21 m)	259	8 (56m)	517	
Cryogenic-PMU	3	76	6	127	
E IVU	2	33	4	66	
Additional devices	~7	120	~10	200	
TOTAL		529		1003	
Available RF Power		540		1080	

RF Stability Requirements

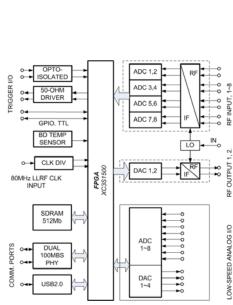
	$\Delta \phi$ (deg)	dδ (x10 ⁻⁴)
Centroid jitter due to Residual dispersion (ID's)	0.81	3
Vertical Divergence (from momentum jitter)	2.4	9
Dipole, TPW (position stability due to momentum jitter)	0.27	1
Timing experiments (5% of 15ps bunch @>500Hz)	0.14	0.5

Cavities: Superconducting single cell 500mHz Cavities

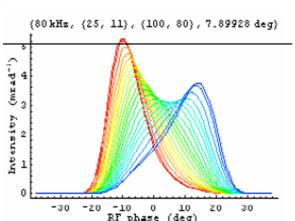
Reasons: more economic on the long term, better beam loading performance


RF Power Source: Klystron Amplifiers 310kW

Passive superconducting 3rd harmonic cavity for bunch lengthening


Storage Ring RF System

- Single cell 500 MHz SC Cavity: CESR-B Design
 - Updated design to comply with safety regulations,
 - Input coupler adaption
- 310 kW klystron RF transmitter,
 - Turn-key, in production
- In-house development LLRF Controls
 - -FPGA based control module, designed, fabricated, tests performed
 - Extensive LLRF modeling,
 - -Future option for adaptive feedback for optimized control

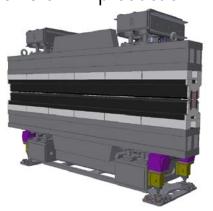


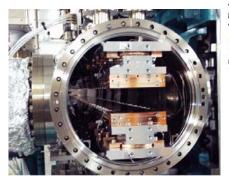
RF Systems

Lq He Cryogenic Plant 900W lq. He Plant Turn-key system in production

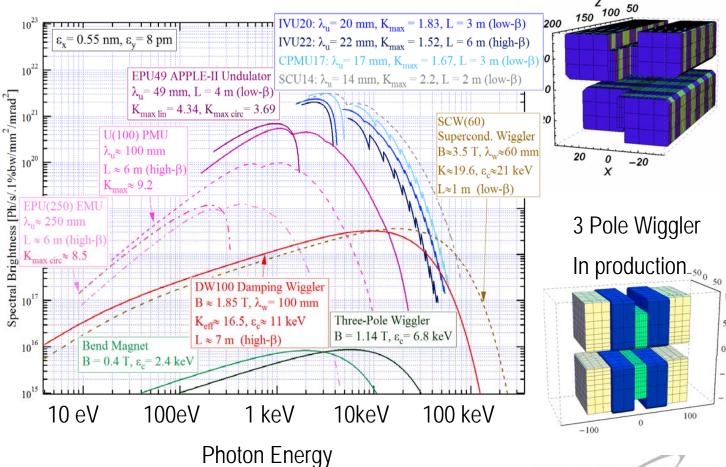
3rd Harmonic Cavity

- -Bunch lengthening factor 2-3
- -Margin for Touschek lifetime
- -New design
- -Production in collaboration with Industry (SBIR)
- -Low power test successful





Insertion Devices


Damping Wiggler 1.8T 6 x3.5m in production

IVU 20,21,22 Design complete

Brightness of NSLS-II radiation devices

EPU

contract award

NSLS-II Insertion Devices

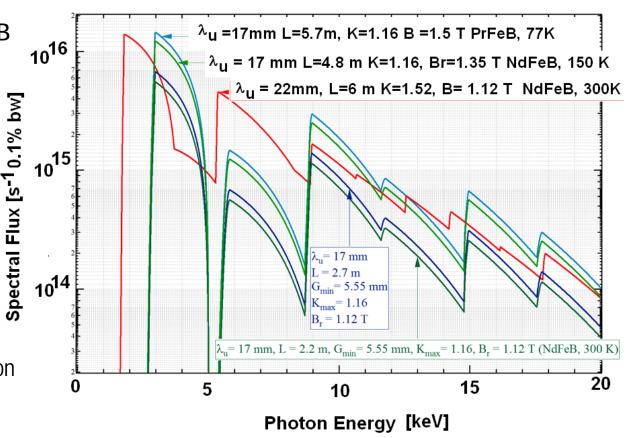
Name	U20	U22(IXS)	EU49	U21(SRX)	DW-1.8T	3PW
Туре	IVU	IVU	EPU	IVU	PMW	PMW
Photon energy range	Hard x- ray (1.9- 20keV)	Hard x-ray (9.1keV)	Soft x-ray (250eV- 1.7keV)	Hard x- ray (1.9- 20keV)	Broad band (<10eV- 100keV)	Broad band (<10eV- 100keV)
Type of straight section	Short	Long	Short (canted)	Short (canted)	Long (in-line)	near 2 nd Dipole
Period length (mm)	20	22	49	21	100	-
Length (m) & Number of Devices	3.0 x 2	3.0	2.0 x 2	1.5	3. 5 x 6	0.25
Number of periods	148	135	36 x 2	69	34 x 2	0.5
Magnetic gap (mm)	5	7.0	11.5	5.5	15.0	28
Peak magnetic field strength B (T)	1.03	0.78	0.57(Heli) 0.94 (Lin) 0.72(vlin) 0.41 (45°)	0.9	1.80	1.14
Keff	1.81	1.52	2.6(Heli) 4.3 (Lin) 3.2(vlin) 1.8 (45°)	1.79	18.0	-
hν fundamental, eV	1620	1802	230 (Heli) 180 (Lin) 285(vlin) 400 (45°)	1570		
hν critical, keV					10.7	6.8
Total power (kW)	8.0	4.7	8.8	3.6	64.5	0.32

Insertion Devices-New Materials

Successful Tests with Pr-Fe-B

Will be operated at

Lq N2 temperature,

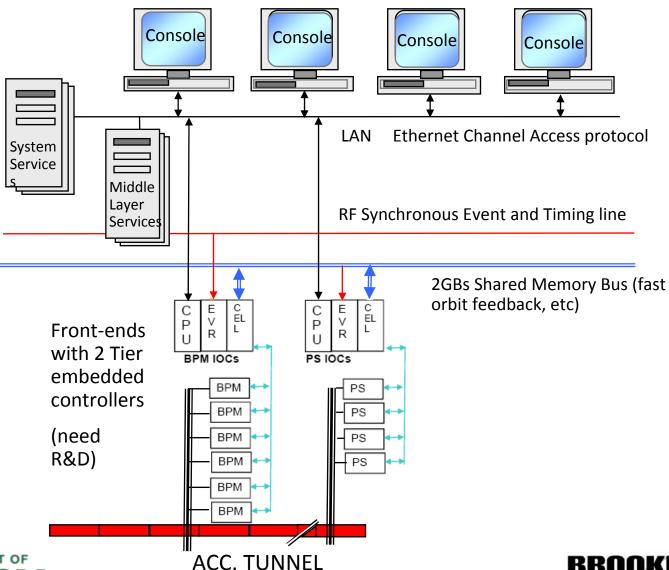

Fairly flat temperature coefficients

Stable operation with enhanced B_r

Vacuum bakeout tests in

Progress

Magnet test areay in production

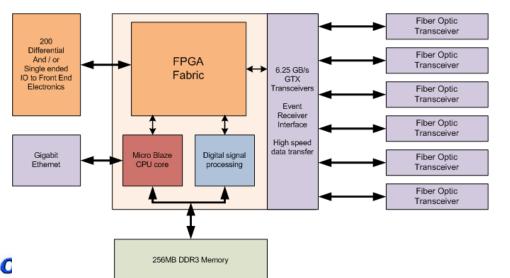


Control System

EPICS protocol

BROOKHAVEN
NATIONAL LABORATORY
BROOKHAVEN SCIENCE ASSOCIATES

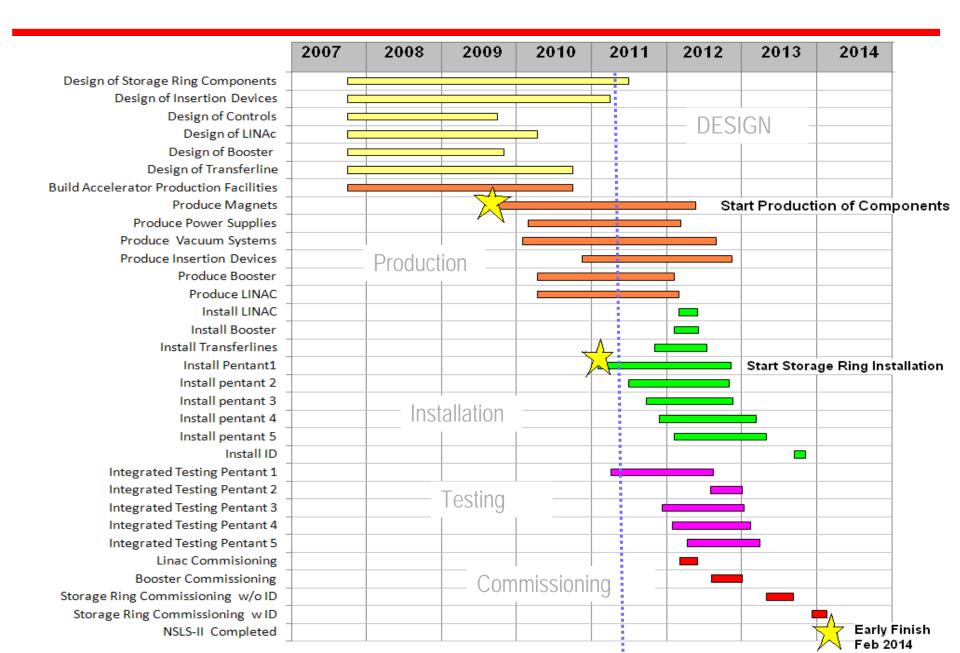
Digital Front End Electronics

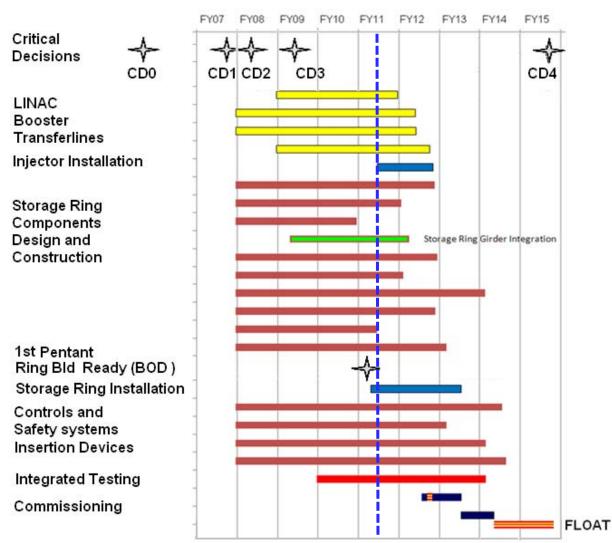

BPM Application:

- Calculates beam position from Raw ADC inputs at 117MHz
- Stores 1 million Turn By Turn data points, 10KHz data points and raw ADC measurements
- Provides 10kHz position data for Fast Orbit Feedback

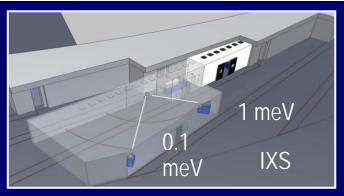
Cell Controller Application:

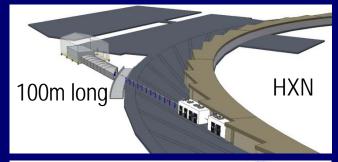
U.S. DEPARTMENT OF ENERGY

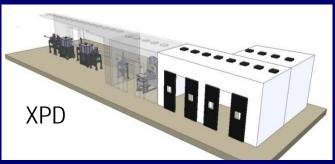

- Transfers all BPM measurements to all cells in less than 15us over redundant fiber optics
- Computes 90 parallel Eigenvectors in less than 4us for fast orbit feedback
- Responds to beam envelope violations in less than 100us for machine protection
 Xilinx Virtex 6 FPGA

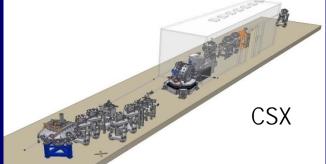

- High speed Serial Communication
- Gigabit Ethernet
- Large Memory
- On board CPU
- Digital Signal Processing

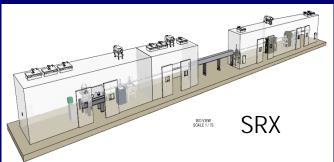
Accelerator Schedule

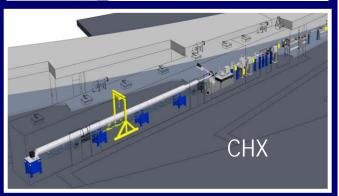

Schedule




The Six Initial NSLS-II Beamlines


inelastic x-ray scattering


hard x-ray nanoprobe


x-ray powder diffraction

coherent soft x-ray scattering/polarization

sub-µm resolution x-ray spectroscopy

coherent hard x-ray scattering

Conclusion

- NSLS-II is a 3rd generation light source using cutting edge accelerator technology
 - Magnet production
 - Alignment
 - instrumentation
 - Insertion devices
 - Controls

to meet the desired performance, a brightness of 10²¹ 2keV photons per (mm²mrad²sec,0,1%bw) needed to achieve 1nm spatial resolution and 0.1meV energy resolution

- Most of Accelerator Components are in production
- First Part of Ring Building available for installation
- Installation of components has started
- Linac will be installed and commissioned this year
- Storage Ring Commissioning will start in May 2013
- Project Early completion is envisioned for February 2014

NSLS-II PAC'11 Contributions

Lattice Design: THP189, THP190, THP129,

Accelerator Physics: WEP176, MOP192, WEP217, THP127, THP193, MOP276

Safety Systems: MOP274,

RF: FROBS4, TUP055,

<u>Instrumentation</u>: MOP211,MOP199, MOP198, MOP193, MOP266

Controls: WEODN4, MOP165

<u>Injection systems:</u> TUP211,THP131-135, THP215,WEP282-283

Insertion Devices: THOPS4,

Vacuum: THP216

