PAUL SCHERRER INSTITUT

Simona Bettoni :: FEL BD Group :: Paul Scherrer Institut

Transfer line commissioning

ATHOS WORKSHOP

- Transfer line composition and main commissioning blocks:
 - BBA of the quadrupoles
 - C-band commissioning
 - Dechirper
- Why do we need a Dechirper
- Dechirper at SwissFEL:
 - Design and expectations
 - Possible features
- Measurements campaign:
 - Transverse
 - Longitudinal
- Conclusions

Main commissioning blocks

1. BBA of quadrupoles

- Hardware: BPMs
- Software: BBA tool
- Number of shifts: 0.5

2. C-band commissioning

- Hardware: bend and screen at Athos dump
- Software:-
- Milestone: energy gain 250 MeV
- Number of shifts: 0.5

3. Dechirper

- Hardware: BPMs, TDC
- Software: emittance measurement tool, alignment tools, energy loss
- Subtasks: alignment of structures, characterize the structures and jitter
- Milestone: as flat as possible longitudinal profile while preserving emittance and mismatch with acceptable jitter
- Number of shifts: 5+?

Why do we need a Dechirper?

- Energy-time correlation (chirp) is introduced going offcrest in the RF cavities
- In a magnetic chicane the particles with different energy have different trajectory (they arrive before or after)
- Bunch length is changed
- Some residual chirp may remain after the compressors
- This is detrimental for some modes (see Eduard's talk)

- We expect residual energy chirp from the compression
- For the Aramis beam the wakefield in Linac 3 compensate the chirp
- For the Athos beam we lack in wakefield from the C-band
- We need to add wakefield sources: dechirper

Distributions optimized by B. Beutner and A. Saa Hernandez

Peak-to-peak

Repeatability

flatness

Motion

50 um

25 um

- Jitter tolerance (minimum gap)

Jitter amplification for conditions similar to Athos

3.8 GeV 1.53 mm gap*

(1 mm gap without any issue, 0.7 mm possible but not used*)

More info in: http://accelconf.web.cern.ch/AccelConf/napac2016/talks/wea1io01_talk.pdf

* A. Lutman and M. Guetg private communication

2 m + 2 m corrugated plate

RadiaBeam SLAC Dechirpe

Measurements campaign: transverse

Measurement of the longitudinal phase space with the dechirpers closed

Screen

	Hardware	WHEN	Software	Milestones	NUMBER OF SHIFTS	Rısк
SLICE EMITTANCE AND MISMATCH	TDC, quadrupoles and screen	TDC installed mid 2020	Common to other sections	Preservation of slice emittance and mismatch		
KICK FACTOR AND BEAM SIZE VS GAP	BPM and screen	From Nov 2019 (first 6 m structures)	Ready (channel names to be updated)	Align the structures t the done	e inje _{3+?}	We cannot fully move the plates. We rely on the alignment group. Possible that we need several machine accesses.

Measurements campaign: longitudinal

Measurement of the longitudinal phase space with the dechirpers closed

- TDC gives the time information
- Bend gives the energy information

	Hardware	WHEN	Software	Milestones	NUMBER OF SHIFTS
LONGITUDINAL PHASE SPACE	Bend and screen or BPM and TDC	TDC installed mid 2020	Common to other sections	Longitudial phase space expected from model	0.5
PROJECTED ENERGY LOSS	Bend and screen or BPM	Bend installed end 2019 me measurer	Ready (channel names to be updated)	Energy spread reduced by 2/3 of the final (only 6 m)	0.25
FIRST CHECKS ON MOVING SYSTEM TRANSMISSION AND JITTER	Dechirper 5 0	Partial from Nov 2019 (and not guaranteed)	Rely on Controls software	Characterize the jitter of the beam as a function of the gap	0.25

A Dechirper was conceived as a device to remove the residual chirp, but it is used for several purposes now:

- Two color using the mismatch variation along the bunch (1 shift)
- Tilted beam and orbit in the undulators (2 shifts)
- Increase the bandwidth: starting from overcompression increase the dechirp (1 shift)
- Passive streaking (parasitic with transverse wakefield measurements)

Wir schaffen Wissen – heute für morgen

The main part of the TL commissioning will be the dechirper

- ... we are making some experience at the injector (tools, some possible issues,...) also if there 2 color, and linearizer tested until now
- ... the main unpredictable aspect to quantify the necessary number of shifts is the alignment, where we have less flexibility than in LCLS

			Contraction of the second	The state of the s
	Task	When	Shifts	Hardware
	Longitudinal (DE loss)	Nov 2019	0.5	Bend+screen/BPM
	Longitudinal (full)	Mid 2020	0.5	TDC
F	Alignment	Nov 2019	5+?	Screen/BPM
	Other modes		4	

• Let L_{ok_j} be the length at fixed a to fully compensate the chirp with the geometry j, and L_j the length of the geometry j, the fraction of the compensated chirp is:

$$\frac{L_j}{L_{ok_j}}$$

• The fraction of the compensated chirp with a combination of geometries is:

$$\sum_{j=\text{geometries}} \frac{L_j}{L_{ok_j}}$$

• The sum of the configurations must give 1 to fully compensate the chirp

Expectations at SwissFEL

- After experience in the injector, design for the corrugation/material to be finalized
- At the present status the residual energy spread in % is:
 - Design 1: corrugated plate (1 m + 1 m) and square structures (3*2 m):

		Gap = 3 mm	Gap = 2.5 mm	Gap = 2 mm			
3 kA 0.39 0.13 -0.3							
nt desibir 2 kA 0.07 -0.20							
ρ ^{γese} – Design 2: changed for more flexibility (8*1 m):							

	Gap = 3 mm	Gap = 2.5 mm	Gap = 2 mm
3 kA	0.53	0.33	-0.02
2 kA	0.20	0.01	-0.35

- Expected gap between 2 and 2.5 mm (with some safety margin compared to LCLS)
- Under consideration design 3 (8*1 m):

3 kA -2.90 -0.97 -0.24 -0.04 0.26 0.40 or go		Gap = 1.4 mm	Gap = 0.9 mm	Gap = 2.4 mm	Gap = 4 mm	Gap = 6 mm	Gap = 8 mm	
	3 kA	-2.90	-0.97	-0.24	-0,02l	0.26	0.40	going
-3.23 -1.29 -0.56 -0.36 -0.07 0.08	2 kA	-3.23	-1.29	-0.56	-0.36	-0.07	0.08	

Dependencies on the gap

• We can quite freely scan the gap without modifying the electron bunch

Таѕк	Rısк	CONSEQUENCES
BBA of the quadrupoles	No issues foreseen	
C-band commissioning	No issues foreseen (RF)	
Dechirper	Alignment of the structures	We rely on the alignment group- only partial movement of the structures
	Emittance and mismatch preserved	Lasing intensity reduction
	Only partial compensation of the chirp	More critical for CHIC and HB mode
	Orbit jitter	Larger gap. Partial chirp compensation

The main unknown is the Dechirper:

- We cannot move in all the dimensions the plates (like in LCLS). There is the risk accesses will be needed with the alignment group
- Determine the minimum gap, given the orbit jitter in the machine. At the moment some safety margin taken.