

Development and Applications of Supermirror

Peter Böni

Physics Department E21 Technical University of Munich D-85748 Garching, Germany

E-mail: peter.boeni@frm2.tum.de Web: http://www.sces.ph.tum.de

Physik Department E21 🛞 🙈 🔟 🔢 Technische Universität München

Stabilization of Flux Density at Low Level

P. Böni and W. Petry, "Neutron Science with Highly Brilliant Beams", in 'Applications of Laser-Driven Particle Acceleration', edited by P. Bolton, K. Parodi, and J. Schreiber, CRC-Press Taylor & Francis, 2018, Boca Raton, FL, USA; https://www.crcpress.com/Applications-of-Laser-driven-Particle-Acceleration/Bolton-Parodi-Schreiber/p/book/9781498766418

Content

- Why supermirror ?
- How does supermirror work
- Fabrication of supermirror
- Applications of supermirror
- Future
- Summary

Use Neutron Source as Efficient as Possible

neutron guides:

transport of neutrons

Transport of Neutrons: Neutron Guides

internal reflection (compare with optical fiber): flux density $\propto \theta_c^2$

Physik Department E21 🛞 🙈 🎹 Technische Universität München

n: index of refraction

 λ : wavelength of neutrons

Content

- Why supermirror?
- How does supermirror work
- Fabrication of supermirror
- Applications of supermirror
- Future
- Summary

Invention of Supermirror

TEM on an m = 2 Supermirror

SINQ: 1st Neutron Source Based on SM-Technology

Proof of Concept

Physik Department E21 🛞 🙈 📶 Technische Universität München

estimate: Francis Atchison, PSI

Content

- Why supermirror?
- How does supermirror work
- Fabrication of supermirror
- Applications of supermirror
- Future
- Summary

2009: Production Runs for VISION @ SNS

2016: Roughness Independent of N

reflectivity of supermirror is fully understood and can be modelled

Physik Department E21 🛞 💫 🎹 Technische Universität München

C. Schanzer et al., JPCS 746, 012024 (2016); http://iopscience.iop.org/article/10.1088/1742-6596/746/1/012024/pdf

N: number of layers

X-Ray Reflectivity of Supermirror m = 4

Physik Department E21 🛞 🙈 📶 Technische Universität München

C. Schanzer, S. Valloppilly, and P. Böni, Nucl. Instr. Meth. A; https://doi.org/10.1016/j.nima.2019.162628

2018: Optimization of Supermirror m = 5

q [nm⁻¹]

Long Term Stability: *m* = 6

Test: Irradiation of Supermirror on Aluminum

Irradiation: fluence 9.6.10¹⁹ n/cm²

sample size: 10 x 10 x 50 mm³

no visible degradation of surface of supermirror is observed

Irradiation of Supermirror on Aluminum

Irradiation test: 9.6.10¹⁹ n/cm²

Content

- Why supermirror?
- How does supermirror work
- Fabrication of supermirror
- Applications of supermirror
- Future
- Summary

Guides: Artistic Glass Work / Standard Technology

Physik Department E21 🛞 🙈 🔃 Technische Universität München

Efficient Transport Using Elliptic Guides

Reduce number of reflections: elliptic guides

2 reflections^{*} → reflection losses small → large solid angle possible

features:

- 90 m long
- graded coating
- truly curved
- installed: 2007

2007 HRPD @ ISIS

Physik Department E21 🛞 🙈 🎹 🛛 Technische Universität München

* if properly designed (is a controversial subject!)

Significant Flux Gain at HRPD

R. M. Ibberson, Nucl. Instrum. Methods A 600, 47 (2009)

similar system has been installed at MLF @ J-PARC (SPICA)

Small Samples: Use of Focusing Elliptic Guides

T. Adams et al., Applied Physics Letters 105, 123505 (2014); http://dx.doi.org/10.1063/1.4896295

Focusing Setup: TA Phonons in Lead

Discussion:

- large gains: $G_{TA} \cong 30 40$
- divergent beam does not spoil Q_{v} resolution
- can be installed at almost any beamline

 $(V_{sample} = 2 \times 2.5 \times 2.5 \text{ mm}^3)$

Physik Department E21 🛞 🙈 🎹 Technische Universität München

G. Brandl et al., Applied Physics Letters 107, 253505 (2015); http://dx.doi.org/10.1063/1.4938503

Elliptic Montel Mirrors: Selene @ SINQ

Installation of *In-situ* Chamber at AMOR

Raw Data: Monolayers Fe (Selene @ AMOR)

Cu on Si(100)

Physik Department E21 🛞 🙈 🎹 Technische Universität München

W. Kreuzpaintner et al., Phys. Rev. Appl. 7, 054004 (2017); https://doi.org/10.1103/PhysRevApplied.7.054004

Monolayers of Fe on Si-Cu: Selene @ AMOR

- new Selene @ SINQ: \cong 1 min / spin channel
- ESTIA at ESS: \cong 0.5 sec / spin channel

Physik Department E21 🛞 🙈 🎹 🛛 Technische Universität München

W. Kreuzpaintner et al., Phys. Rev. Appl. 7, 054004 (2017); https://doi.org/10.1103/PhysRevApplied.7.054004

Montel Mirrors Combined with In-situ Sputtering

Intensity (arb. units)

Physik Department E21 🛞 🙈 📶 Technische Universität München

W. Kreuzpaintner et al., Phys. Rev. Appl. 7, 054004 (2017); https://doi.org/10.1103/PhysRevApplied.7.054004

Full Illumination: Move Guide Close to Moderator

Extraction of Neutrons Using Tapered Guides?

Content

- Why supermirror?
- How does supermirror work
- Fabrication of supermirror
- Applications of supermirror
- Future
- Summary

Supermirror: Is there a Limitation on *m*?

Momentum Transfer (Å⁻¹)

Challenges:

- sharp interfaces (not required)
- low roughness
- substrates with low roughness
- absorption

solved solved solved major challenge

C. Schanzer et al., JPCS 746, 012024 (2016); http://iopscience.iop.org/article/10.1088/1742-6596/746/1/012024/pdf

The MX Mirror Project: m = 10

Development of Neutron Guide Optics

Beam Extraction

2 options for efficient extraction:

- extend guides (tapered/not tapered) close to moderator (new sources)
- reduction of background due to decreased beam window

- Wolter optics (optional: Montel) (avoid illumination losses at existing sources)
- reduction of background (small beam extracted)
- optics may be placed outside biological shielding

Experience: Design Large Beam Inserts


```
Insert made from copper
```

example: cold neutrons

- *L* = 6 m
- $\lambda = 5 \text{ Å}$
- *m* = 3
- divergence: 3⁰
 - \rightarrow D = 311 mm + mechanics

```
\times 2 for elliptic guides
```

example: hot neutrons

- *L* = 6 m
- $\lambda = 0.5 \text{ Å}$
- *m* = 8
- divergence: 0.8°

$$\rightarrow$$
 D = 83 mm \neq mechanics
× 2 for elliptic guides

Focusing of Hot Neutrons

Paramters of focusing guide:

- *L* = 500 mm
- m = 7.0 / R = 51%

•
$$w_{in} = h_{in} = 15 \text{ mm}$$

•
$$w_{out} = h_{out} = 5.6 \text{ mm}$$

Compact Sources: Halo Neutrons

- no moderator requiredflux scales with power of ERL

Physik Department E21 🛞 🙈 🎹 Technische Universität München

D. Habs et al., Applied Physics B 103, 485–499 (2011); https://link.springer.com/article/10.1007/s00340-010-4276-3

 $B_{CW} \cong 10^5 \text{ s}^{-1} \text{ mm}^{-2} \text{ mrad}^{-2} (0.1\% \text{BW})^{-1}$

 $B_{pulsed} \cong 10^{11} \text{s}^{-1} \text{ mm}^{-2} \text{ mrad}^{-2} (0.1\% \text{BW})^{-1}$

Jülich High-Brilliance Neutron Source Project

U. Rücker, T. Cronert, J. Voigt, J. P. Dabruck, P.-E. Doege, J. Ulrich, R. Nabbi, Y. Beßler, M. Butzek, M. Büscher, C. Lange, M. Klaus, T. Gutberlet, and T. Brückel

Question: Brilliance??

Physik Department E21 🛞 🙈 🎹 Technische Universität München

U. Rücker et al., Eur. Phys. J. Plus 131, 19 (2016); https://doi.org/10.1140/epjp/i2016-16019-5

Content

- Why supermirror?
- How does supermirror work
- Fabrication of supermirror
- Applications of supermirror
- Future
- Summary

Summary

Supermirror is essential: optimize for

- large *m*, high reflectivity *R* (limitation: absorption)
- polarizing mirrors / band pass mirrors
- long lifetime, irradiation resistant, stress-free
- advanced optics available

Some comments:

- design beamline backwards: physics \rightarrow neutron source
- accept Liouville theorem: extract only useful neutrons
- maintain dense phase space / optimize brilliance transfer
- develop new optical concepts (Montel, Wolter, etc.)
- adaptive optics (adjustment of beam size, divergence)
- be aware: neutron sources are aged when taken into operation (who buys a 10 years old car?)
- wishful thinking: avoid moderation process, use accelerator

Acknowledgment

- Christian Schanzer (SNAG)
- Michael Schneider (SNAG)
- Tobias Panzner (SNAG)
- Uwe Filges (PSI)
- Jochen Stahn (PSI)
- Georg Brandl (TUM)
- Tobias Weber (TUM)
- Robert Georgii
- Oliver Zimmer (ILL)

Thank you for your patience

