On-target neutron flux monitoring with Self Powered Neutron Detectors

Efficient Neutron Sources - PSI, September 3, 2019

S. Fiore, M.Angelone, F. Di Giambattista, L. Lepore, M.Pillon
ENEA, Department of Fusion and Technology for Nuclear Safety and Security
Neutron fluxes in fusion power Tokamak

Neutron flux in ITER will be a first of its kind:

10^{14} n/cm2s on the first wall surface, slowly decreasing with penetration depth

Monitoring the neutron flux is one of the key diagnostics to understand plasma burning conditions in the tokamak

with such intensity, monitoring is a great challenge considering also environmental conditions: temperature above 200 degrees C, maintainability of any detector in those areas limited to long shutdown periods

Radiation damage to structures and devices is one of the main challenges of future fusion reactors: several DPA are foreseen on most exposed materials including structural ones
In order to evaluate the damage to structural materials for the DEMO reactor, the next step to commercial fusion electricity after ITER, the Roadmap to Fusion Energy has foreseen a dedicated test facility: IFMIF-DONES.

Plasma-facing materials radiation hardness will be tested under realistic fusion irradiation conditions and validated to be used in the harsh conditions of a fusion power plant. **Goal: 15 DPA/FPY**
In 2018 the site for the construction of DONES has been chosen in Escuzar, 30 km from Granada (Spain).
IFMIF-DONES is based on a 40 MeV, 125 mA in continuous wave mode (CW) deuteron accelerator (5 MW beam average power) hitting with a rectangular beam size (approx. 20 cm x 5 cm) a **liquid Li screen target** flowing at 15 m/s to dissipate the beam power and generating a flux of **neutrons of** 10^{14} cm$^{-2}$ s$^{-1}$ with a broad peak at 14 MeV through stripping nuclear reactions, close to the expected conditions of fusion power plants.
Neutron flux in the DONES Test Cell

Monitoring the neutron flux during the irradiation in the Test Cell is a challenging task:

- year-long irradiations with no access to the cell are foreseen
- $10^{14} \text{n/cm}^2\text{s}$ on the samples with 200-400° C pose a serious challenge for any kind of detector

New detectors should be developed to this purpose
Self Powered (Neutron) Detectors (SPNDs) are rugged miniature devices used for fixed in-core reactor monitoring both for safety purposes and neutron and gamma flux mapping. They operate without any bias voltage and are usually constructed in a coaxial configuration with a central emitter characteristic of each device type. The other electrode or metallic sheath is called collector and the two are separated by a coaxial insulator. Typical diameter is 3mm.

V, Co, Rh are common elements used as emitter in the thermal neutron SPNDs. Their sensitivity for fast neutron is rather low due to limited cross section of these elements. Alternative materials should be used to cover fast neutron energy range.
Contributions to signal formation

Different reactions can take place in the electrodes and the insulator, inducing a current through the emission of electrons

- ($n,γ, β$): the nuclei of the emitter are activated by a neutron capture and decay with $β$ electron emission
 $→$ delayed response
- ($n,γ$): photons from a radiative capture interact through Compton and photoelectric effect
 $→$ prompt response
- ($γ,e^−$): external photons interact through Compton and photoelectric effect
 $→$ prompt response

Note that electrons coming from the emitter that stop in the collector give a positive signal; electrons coming from the collector that stop in the emitter give a negative signal

$→$ The net current is the algebraic sum of all the contributions
Test environment for DONES candidate SPND: CERN nTOF

Working environment on DONES Target for the SPND:
mixed neutron and gamma field, wide energy range neutron spectrum up to 40 MeV

Looked for a Particle accelerator facility beam on target neutron production to face with similar conditions including background (particle and EMI)

The nTOF experiment at CERN exploits the 20 GeV PS proton beam interaction with a lead target, to produce neutrons by spallation.

Neutron spectrum close to the target has a wide energy spectrum up to hundred MeV and a long tail down to thermal neutrons
In order to get $\sim 10^{11} \text{n/cm}^2 \text{s}$ with high fraction in the energy range 1-10 MeV, we installed SPNDs in the area surrounding the target.

Two readout systems:
- one with the Keithley picoammeters
- one using a 4-channels CAENels picoammeter with 10 ms time resolution
- 100 m cable between SPND and DAQ

The test beam lasted over ~ 50 days.
Rhodium SPND signal shape

Proton bunches hit target every 1.2 s or multiple -> discrimination between prompt and delayed signal possible

Rh SPND response has a sharp peak due to prompt target emission, proportional to pulse intensity, and a slow drift of the baseline due to neutron activation of the emitter

Beam off: (multiple) exponential decay

\[f(t) = Ae^{s_1 t} + Be^{s_2 t} \]

\[
\frac{A}{A+B} = (92 \pm 3)\% \quad T_{1/2} = (42 \pm 1)s \\
\frac{B}{A+B} = (8 \pm 2)\% \quad T_{1/2} = (240 \pm 60)s
\]

consistent with the expected values of the half life of ^{104}Rh and ^{104m}Rh
The intensity of the baseline current of Rh SPND is proportional to the average proton current on target → it’s **proportional to the neutron flux** on the detector. The points sample a time window of ~50 days.

Baseline is isolated from the prompt signal. The profile plot is fit with a Gaussian function and central value is added to the linearity plot. Consistent also with Warren analytical model which predicts 10^{-11} A in this flux range.
Second test: GELINA neutron time-of-flight facility

GELINA neutron time-of-flight facility (JRC Geel, Belgium) provides a fast neutron spectrum close to the target, with a yield up to \(2 \times 10^{13}\) n/s exploiting neutron photoproduction from an electron beam of 110 MeV average energy interacting with a rotating uranium target.

SPND placed 5 cm far from the target hotspot, on a support structure which substituted the moderator used for TOF experiments: first experiment with such setup at GELINA thanks to JRC colleagues.
Current from a Dummy SPND has been subtracted as a background from the Al SPND

Beam variations in steps of factor 2: wide range of neutron fluxes (1:16)

SPND/neutron monitor ratio constant over the full range

Ni activation foils to measure neutron flux on the support structure:

5.9x10^{10} n/cm^2s at the maximum beam intensity – consistent with MCNP (6.0x10^{10})
n_TOF and GELINA target monitoring with SPND:

Experiment at n_TOF with SPNDs has successfully taken data across almost 50 days

- **SPND response tested under several operation conditions** including variable neutron flux, flux interruptions from minutes to days, all in severe, real-life hadron accelerator EMI conditions
- Very **low noise** considering detectors position and cable length
- **Rh SPND** delayed signal consistent with model and linear with average neutron flux
- Rh SPND decay time consistent with expected activation processes

in GELINA: first experiment on the modified target moderator arm, thanks to JRC colleagues

- simulated neutron flux fully consistent with measured one
- **Al SPND** signal proportional to beam intensity in hard n flux
Outlook

The performances of the SPNDs and the experience of the first on-target experiment at GELINA and nTOF opened new scenarios:

- **SPNDs will be installed in the new nTOF Target#3 assembly** to monitor the neutron production independently from PS data during next 10 years operation.
- **New tests of** SPND prototypes with different emitter materials are foreseen in research reactors and beam target (with different setup to reduce background).
- **Detailed signal generation Monte Carlo models** are needed to fully understand the response in such mixed fields: comparisons and new development are foreseen.

Looking forward for new target neutron sources to host SPNDs for test purposes and long-term monitoring of the neutron yield.
Thank you

salvatore.fiore@enea.it